Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1240 results about "Inorganic organic" patented technology

Hybrid organic-inorganic planar optical waveguide device

InactiveUS6511615B1Reduce stressStress induced polarization effects can be minimizedOptical articlesGlass shaping apparatusOptical radiationSilanes
A planar optical device is formed on a substrate. The device comprises an array of waveguide cores which guide optical radiation. A cladding layer is formed contiguously with the array of waveguide cores to confine the optical radiation to the array of waveguide cores. At least one of the array of waveguide cores and cladding layer is an inorganic-organic hybrid material that comprises an extended matrix containing silicon and oxygen atoms with at least a fraction of the silicon atoms being directly bonded to substituted or unsubstituted hydrocarbon moieties. This material can be designed with an index of refraction between 1.4 and 1.55 and can be deposited rapidly to thicknesses of up to 40 microns. In accordance with another embodiment of the invention, a method for forming a planar optical device obviates the need for a lithographic process. Illustratively, a method for forming an array of cores comprises the steps of: (1) preparing a waveguide core composition precursor material comprising at least one silane and a source of hydrocarbon moiety, (2) partially hydrolyzing and polymerizing the waveguide core precursor material to form a waveguide core composition, (3) using a mold, forming an array of waveguide cores comprising the waveguide core composition, and (4) completing hydrolysis and polymerization of the waveguide core composition under conditions effective to form an inorganic-organic hybrid material that comprises an extended matrix containing silicon and oxygen atoms with at least a fraction of the silicon atoms being directly bonded to substituted or unsubstituted hydrocarbon moieties. A cladding layer is then deposited over the array of waveguide cores. The use of the mold to pattern the array of waveguide cores obviates the need for a lithographic process.
Owner:CORNING INC

Inorganic-organic microbial compound fertilizer and preparation method thereof

The invention relates to an inorganic-organic microbial compound fertilizer and a preparation method thereof. The inorganic-organic microbial compound fertilizer is characterized by comprising ordinary high-concentration three-element compound fertilizer, humic acid, fly ash, microbial compound bacteria powder and other elements, wherein the microbial compound bacterial powder is obtained by mixing bacterial powders which are prepared by respectively fermenting and culturing photosynthetic bacteria, yeast, lactic acid bacteria, bifidobacterium, bacillus subtilis, bacillus licheniformis, bacilluslaterosporus, bacillus megaterium, bacillus mucilaginosus, azotbacteria chroococum and actinomycetes. In the inorganic-organic microbial compound fertilizer, the microbial content of the yeast is no less than 2.0*108cfu/g, and the microbial contents of the other strains are all no less than 2.0*109cfu/g. The inorganic-organic microbial compound fertilizer can centralize the advantages of an organic fertilizer, an inorganic fertilizer and microorganisms, thereby enhancing the stress resistance and the disease resistance of crops, enhancing the fertilizer absorption ability of the crops, lowering the soil hardening degree and improving the soil ecological environment and the quality of the crops.
Owner:山西晨雨晋中肥业有限公司

Inorganic-organic nano composite solid electrolyte membrane and preparation method and application thereof

The present invention discloses an inorganic-organic nano composite solid electrolyte membrane and a preparation method and application thereof. The composite solid electrolyte is a novel inorganic-organic nanocomposite combining the respective advantages of inorganic ceramic solid electrolyte and organic polymer electrolyte and is composed of a negative electrode protective layer, a support layerand a positive electrode interface layer. The support layer plays a supporting role, and the main component of the negative electrode protective layer is the inorganic solid electrolyte with good mechanical properties, which can effectively inhibit the growth of lithium dendrite; and the positive electrode interface layer is mainly composed of organic polymer electrolyte with good flexibility, ensures good contact with active materials and provides a continuous ion transport channel. In the present invention, the composite solid electrolyte with good interface compatibility is prepared by coating on both sides of the support layer, and the process is simple and efficient. The composite solid electrolyte can effectively inhibit dendritic crystal and reduces interface resistance so that a solid lithium metal battery has higher energy density and longer cycle life.
Owner:SHANXI INST OF COAL CHEM CHINESE ACAD OF SCI

Electrochemical device and inorganic/organic composite porous membrane

The invention discloses an inorganic / organic composite porous membrane, which comprises a porous base material and an active layer attached to the porous base material, wherein the active layer contains a mixture of inorganic granules and a bonding agent. In the inorganic / organic composite porous membrane, the defect of poor heat safety of the conventional polyolefin-base diaphragm is overcome by using the inorganic / organic composite porous membrane formed by the porous base material, the inorganic granules and the bonding agent; the inorganic / organic composite porous membrane has the high antioxidation, can prevent the diaphragm from being oxidized in a lithium battery of a high-voltage anode material system, has the absorption and infiltration capacity of electrolyte which is better than that of conventional polyolefin-base diaphragm, and can improve solve the problem of the absorption and infiltration of the electrolyte in the large-size lithium battery and the lithium precipitation of the battery effectively. Therefore, the inorganic / organic composite porous membrane can improve the performance and safety of an electrochemical device serving as the inorganic / organic composite porous membrane as the diaphragm. In addition, the invention also discloses a preparation method for the inorganic / organic composite porous membrane and the electrochemical device using the membrane.
Owner:DONGGUAN AMPEREX TECH

Inorganic-organic slow-acting fertilizer suitable for landscaping nursery stocks and preparation method and application thereof

The invention discloses an inorganic-organic slow-acting fertilizer suitable for landscaping nursery stocks and a preparation method and application thereof. The inorganic-organic slow-acting fertilizer consists of the following components in percentage by weight: 10-30 percent of particular compound fertilizer, 10-20 percent of coated fertilizer and 55-75 percent of particular organic fertilizer. The inorganic-organic slow-acting fertilizer has the advantages of integration of the advantages of the organic fertilizer, the compound fertilizer and the coated fertilizer, comprehensive nutritional elements, balanced nutrients, slow-release effect and avoidance of the defects of single nutritional ingredient and short fertilizer effect existing in the conventional landscaping nursery stock fertilizer, can be taken as a basic fertilizer as well as an additional fertilizer for landscaping nursery stocks, is particularly suitable for culturing on construction fields with large fertilizer deep placement difficulties, urban landscaping lands with firm soil and the like, and can be applied to ecological restoration landscaping nursery stocks which need to reduce disturbance.
Owner:广州普邦园林股份有限公司 +1

Method for functionalizing polymer on surface of nano graphene oxide

The invention relates to a method for functionalizing a polymer on the surface of nano graphene oxide. The method comprises the following specific steps: preparing graphene oxide from natural graphite powder by an improved Hummers method, utilizing methoxy polyethylene glycol and pyrene acids to carry out esterification to generate polyethylene glycol with pyrenyl as the terminal group, and finally grafting the polyethylene glycol with pyrenyl as the terminal group on the surface of graphene oxide through pi-pi interaction between pyrenyl and the surface of graphene oxide, thus obtaining the graphene oxide with the functionalized polymer on the surface. The solubility of the prepared graphene oxide with the functionalized polymer on the surface is greatly improved. The method has the following advantages: a main process adopted in the experiment is as follows: a polymer with a complex structure is designed and prepared in advance and then is grafted on the graphene oxide, and the grafting reaction can be carried out at normal temperature and pressure, so the whole experiment process is very simple and convenient. Therefore, the study provides a direct method for modifying the graphene oxide and preparing the functionalized graphene oxide-polymer complex to form a new inorganic-organic hybrid material, thereby promoting the development and application of graphene oxide-based materials.
Owner:TONGJI UNIV

All-solid-state lithium-sulfur battery

The invention discloses an all-solid-state lithium-sulfur battery. The all-solid-state lithium-sulfur battery comprises a sulfur positive electrode, a lithium or lithium alloy negative electrode, and a lithiated sulfoacid polymer solid electrolytic diaphragm; the solid electrolytic diaphragm is positioned between the sulfur positive electrode and the lithium or lithium alloy negative electrode; the sulfur positive electrode comprises a sulfur-containing active material, a conductive agent and a lithiated sulfoacid polymer; and the sulfur positive electrode, the lithiated sulfoacid polymer solid electrolyte and the lithium or lithium alloy negative electrode are assembled in a superimposition manner in sequence to form the battery. The room temperature ionic conductivity of the lithiated sulfoacid polymer solid electrolyte is greater than 10<-5>S/cm, and complexing of a lithium salt is not needed; the preparation method is simple; in addition, the room temperature ionic conductivity of the lithiated sulfoacid polymer solid electrolyte is better than that of a common inorganic-organic composite solid electrolyte; the sulfur positive electrode pole piece is prepared by adopting a polymer emulsion, and an efficient "sulfur/carbon/solid electrolyte" interface is established in the electrode, so that the activity of the sulfur electrode is improved and the battery with excellent performance is obtained; and in addition, the existing pole piece coating process and equipment can be utilized, and large scale production can be facilitated.
Owner:DALIAN INST OF CHEM PHYSICS CHINESE ACAD OF SCI

Organic electroluminescent device

An object of the invention is to achieve an organic EL device which is resistant to a deterioration of an inorganic-organic interface, has performance equivalent or superior to that of a prior art device comprising hole and electron injecting and transporting layers using an organic substance, possesses an extended life, weather resistance and high stability, and is inexpensive. This object is accomplished by the provision of an organic EL device which comprises a substrate, a hole injecting electrode and a cathode formed on the substrate, and an organic substance-containing light emitting layer located at least between these electrodes, wherein an inorganic insulating electron injecting and transporting layer is located between the light emitting layer and the cathode, and an inorganic insulating hole injecting and transporting layer is located between the light emitting layer and the hole injecting electrode. The inorganic insulating electron injecting and transporting layer comprises as a main component one or two or more oxides selected from the group consisting of strontium oxide, magnesium oxide, calcium oxide, lithium oxide, rubidium oxide, potassium oxide, sodium oxide and cesium oxide, and the inorganic insulating hole injecting and transporting layer comprises as a main component an oxide of silicon and/or an oxide of germanium. The main component has an average composition represented by (Si1-xGex) Oy where 0</=x</=1, and 1.7</=y</=1.99. The light emitting layer comprises a layer made up of a host substance on a side thereof contiguous to the inorganic insulating electron injecting and transporting layer and/or the inorganic insulating hole injecting and transporting layer. A layer containing a dopant in addition to the host substance is located on the side of the light emitting layer that faces away from the layer made up of the host substance or between them.
Owner:TDK CORPARATION

Method for preparing microcapsule red phosphorus inflaming retarding polylactic acid

The invention belongs to the technical field of inflaming retarding modification of high polymer materials, and specifically relates to a method for preparing microcapsule red phosphorus inflaming retarding polylactic acid. The method comprises the following steps of: pre-treating red phosphorus, and preparing melamine formaldehyde resin prepolymer solution; adding the pretreated red phosphorus, distilled water which is 2 to 20 times of the quantity of the red phosphorus and a dispersing agent which is 0.5 to 2 percent of the quantity of the red phosphorus into a reaction vessel; stirring the mixture and heating the mixture to a temperature of between 60 and 90 DEG C to obtain a red phosphorus suspension; then adding metal salt solution into the suspension; adjusting the pH value of the system by using ammonia water; keeping the temperature and stirring the mixture; adding the mixture into the melamine formaldehyde resin prepolymer solution so that the resin content in the solution is 22 to 94 percent of quantity of the red phosphorus; adjusting the pH value of the system to between 4 and 5 by using glacial acetic acid, keeping the temperature and stirring the mixture; after the reaction is finished, cooling and filtering the suspension, washing the suspension to be neutral, and drying the suspension to obtain inorganic-organic double-layer coated microcapsule red phosphorus; grinding the obtained microcapsule red phosphorus, and drying polylactic acid to remove the moisture; and adding the obtained microcapsule red phosphorus and the polylactic acid into a drying container, mixing the obtained microcapsule red phosphorus and the polylactic acid evenly, and melting and blending the mixture to obtain the required product. In the product, the polylactic acid accounts for 65 to 75 percent and the microcapsule red phosphorus accounts for 25 to 35 percent. The method has a low cost and a simple and environment-friendly preparation process.
Owner:TONGJI UNIV

Preparation method for inorganic-organic composite adhesive-coated soft magnetic composite

The invention discloses a preparation method for inorganic-organic composite adhesive-coated soft magnetic composite. The preparation method for the inorganic-organic composite adhesive-coated soft magnetic composite includes steps that (1) mixing metal magnetic powder according to particle size distribution; (2) passivating the prepared magnetic powder of the step (1) through passivator; (3) using the adhesive composed of organic adhesive and inorganic adhesive to coat the passivated magnetic powder particles of the step (2); (4) pressing the bonded magnetic powder of the step (3) to obtain a magnetic powder core; (5) carrying out heat treatment on the pressed magnetic powder core of the step (4), and spraying to obtain a target product. The preparation method for the inorganic-organic composite adhesive-coated soft magnetic composite enables the compounding effect of the organic adhesive and inorganic adhesive to be improved and integrates advantages of the organic adhesive and inorganic adhesive; the inorganic-organic composite adhesive-coated soft magnetic composite is reasonable in component selection, is good in use effect and has good insulating bonding effect for iron-base metal soft magnetic powder, nickel-base metal soft magnetic powder and other metal soft magnetic powder with other components. The magnetic powder core made from the inorganic-organic composite insulating adhesive has excellent magnetic property and mechanical performance.
Owner:ZHEJIANG UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products