Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

646results about How to "High sintering activity" patented technology

Method for preparing rare-earth oxide dispersion strengthened fine-grained tungsten material

A method for preparing a rare-earth oxide dispersion strengthened fine-grained tungsten material, comprising: according to a condition that a mass percentage of rare-earth oxide is 0.1-2%, and the remaining composition is W, weighing soluble rare-earth salt and tungstic acid salt, and respectively preparing 50-100 g / L of rare-earth saline solution and 150-300 g / L of tungstic acid saline solution; adding a minor amount of alkali into the rare-earth salt to control the pH to be 7-8, adding an organic dispersing agent, and stirring to enable the rare-earth salt to form uniformly suspending R(OH)3 colloidal particles (R represents a rare-earth element); adding the tungstic acid saline solution into the R(OH)3 colloidal particles, adding a minor amount of acid to control the pH to be 6-7, adding the organic dispersing agent, stirring to enable the tungstic acid salt to form tungstic acid micro-particles, precipitating and coating the R(OH)3 colloidal particles with the R(OH)3 colloidal particles as a core, and forming coprecipitated coated colloidal particles; conducting spray drying on the coprecipitated coated colloidal particles to obtain a composite precursor powder of tungsten and rare-earth oxide; calcining, conducting thermal reduction via hydrogen, and preparing superfine nanometer tungsten powder having a particle size of 50-500 nm; and conducting normal high-temperature sintering after a general pressing forming. The high-performance fine-grained tungsten material dispersed and strengthened by a minor amount of rare-earth oxide prepared by the above method has a density approximate to full density (>=98.5%), and uniform and small tungsten grains having an average size of 5-10 [mu]m; in addition, rare-earth oxide particles having a particle size of 100 nm - 500 nm are uniformly distributed in a tungsten crystal or a crystal boundary.
Owner:长沙微纳坤宸新材料有限公司

Method for preparing sulfur and nitrogen co-doped titanium dioxide with visible light catalytic activity

The invention provides a method for preparing sulfur and nitrogen co-doped titanium dioxide with visible light catalytic activity, which adopts a sol-gel method and comprises the following steps: hydrolyzing titanium ester and introducing sulfur and nitrogen sources to obtain a titanium dioxide sol, wherein the sulfur and nitrogen sources are from thiourea solution; in a sol system, dropwise adding 1 to 5 percent saturated aqueous solution of thiourea to perform the hydrolysis reaction to obtain the sol; then performing aging and volatilizing a diluent to obtain a titanium dioxide gel; drying the titanium dioxide gel and grinding into powders; performing heat treatment on the solid powder; and calcinating to obtain sulfur and nitrogen co-doped titanium dioxide nano powder. In the method, the thiourea is used as the raw materials of the nitrogen and sulfur sources, the sulfur and the nitrogen are simultaneously introduced in the process of the hydrolysis reaction of the sol to achieve synergistic effect and improve the reaction efficiency, raw material consumption is less, the process is simplified, the absorption range of visible light is effectively improved, the wavelength of the visible light is expanded to about 650nm, and the sulfur and nitrogen co-doped titanium dioxide has obvious visible light activity in the photocatalytic degradation reaction of organic pollutant molecules.
Owner:BEIJING UNIV OF CHEM TECH

Preparation method of copper-coated tungsten composite powder

The invention discloses a preparation method of copper-coated tungsten composite powder, belonging to the technical field of powder metallurgy. Corresponding tungsten powder and blue vitriod are employed according to the weight ratio of composite powder to be prepared and the tungsten powder is pre-treated; copper sulphate and seignette sol are dissolved into solution; bipyridine is added and NaOH is used to adjust pH value to 12-14; an appropriate amount of formaldehyde solution and the tungsten powder are added; the mixture is heated and then stirred continuously in constant-temperature bathing at 30-60 DEG C until the tungsten powder is red; the tungsten powder is washed, dried, reduced and annealed, thereby obtaining copper-coated tungsten composite powder. The preparation method of copper-coated tungsten composite powder has wide application range and is applicable to tungsten-powder coating coppers with different finenesses and shapes. The preparation method of copper-coated tungsten composite powder prepares copper-coated tungsten composite powder in different content ratios according to different requirements. The copper-coated tungsten composite powder obtained by the method of the invention has excellent sintering activity, thereby improving the combination property of tungsten copper alloy.
Owner:UNIV OF SCI & TECH BEIJING

Alumina ceramic and preparation method thereof

ActiveCN101117284AAvoid the debinding processSimple processTunnel kilnCelsius Degree
The invention provides alumina ceramics and a manufacturing method of the alumina ceramics. The main materials of the alumina ceramics are as follows: alumina micro mist or a superfine alumina micro mist which is formed by Gamma alumina and an Alpha alumina with an particle diameter of between zero point one to three point five micron and a purity of ninety-nine point nine percent or more than ninety-nine point nine percent according to certain proportion. One or a mixture of a small quantity of magnesia, yttria, lanthana, thulia and yttria stabilized zirconia is added into the micro mist as sinter accessory ingredient and is subject to dry pressing, grouting and isostatic cool pressing after being even mixed evenly, thus ceram green pressing is obtained. Only a little organic addition agent is needed to be added. After drying, the green pressing body does not need to be roasted and can be directly introduced to an ordinary high temperature si-mo rod resistance furnace or a continuous type si-mo rod electrothermal tunnel kiln to be sintered for one to three hours at a temperature below one thousand six hundred and seventy Celsius system. Therefore, the alumina ceramics can be obtained with high tightness, mechanical property and good dielectric property and with a nonconventional structure and a placode the size of which is zero point two to two hundred millimeter and a purity of ninety nine to ninety-nine point nine percent.
Owner:BEIJING SINOMA SYNTHETIC CRYSTALS CO LTD +1

Positive electrode silver paste for back passivation silicon solar cell and preparation method thereof

The invention discloses positive electrode silver paste for a back passivation silicon solar cell and a preparation method thereof. The positive electrode silver paste comprises, in mass percent, 3%-15% of organic carriers, 80%-95% of silver powders and 1%-5% of inorganic glass materials. The inorganic glass materials are prepared by compounding Pb-V-Te glass and Bi-W-Si glass; and the silver powders are prepared by compounding first silver powders and second silver powders. Through introduction of nanometer silver powders, sintering activity of a silver powder system is improved, and compactness of silver grid lines under low-temperature sintering is improved; by adjusting softening temperature, viscosity and surface tension of the glass materials, liquidity and wetting ability of glass liquid are improved, etching capacity of the glass liquid to a front-surface antireflection layer is ensured and silver powder fusion and reprecipitation capability is improved; precipitation of silver nanometer colloid particles on the surface of a silicon wafer helps to promote the glass layer to form good ohmic contact with the silicon wafer, and thus conversion efficiency is improved; and through introduction of the second component glass powders, bonding strength between the glass layer and a silicon substrate is enhanced.
Owner:GUANGDONG AIKO SOLAR ENERGY TECH CO LTD

High-temperature-resistant high-strength aluminum oxide fiber enhanced composite material and preparation method thereof

The invention relates to a high-temperature-resistant high-strength aluminum oxide fiber enhanced composite material and a preparation method thereof. The preparation method comprises the following steps of: by taking a two-dimensional cloth paving layer and 2.5D woven or orthogonally three-dimensional woven continuous aluminum oxide fiber preform as an enhancer, preparing a matrix through a double nano composite impregnation liquid where silicon dioxide and aluminum oxide are uniformly mixed; and finally obtaining the aluminum oxide fiber enhanced composite material through the process of vacuum pressure impregnation, micro-positive pressure medium and low temperature pre-curing, micro-positive pressure curing and atmosphere temperature programming sub-sectional thermal treatment, wherein the mass ratio of silicon dioxide to aluminum oxide in the composite material is (19:1)-(12:8), and the volume content of the aluminum oxide fibers is 30-60%. The prepared composite material has a high-temperature-resistant property and a high-temperature mechanical property, and is high in compactness; the room temperature tensile strength of the material reaches 310+/-30MPa, the tensile strength at 1100 DEG C reaches 135+/-20MPa, and the tensile strength at 1200 DEG C reaches 90+/-10MPa; and compared with a similar quartz fiber enhanced silicon dioxide oxide/oxide composite material, the performance is improved by 4-5 times.
Owner:AEROSPACE RES INST OF MATERIAL & PROCESSING TECH +1

Method for preparing solid electrolyte by using lithium lanthanum zirconium oxide precursor coated powder

The invention discloses a method for preparing a solid electrolyte by using lithium lanthanum zirconium oxide precursor coated powder. The method specifically comprises the steps of dissolving a certain amount of lanthanum nitrate and zirconium nitrate into water, adding a precipitator, namely ammonium carbonate, controlling the pH value to ensure that La<3+> and Zr<4+> ions are simultaneously precipitated, and filtering and washing the precipitate; weighing a certain amount of lithium oxalate, dissolving lithium oxalate into water, adding the precipitate into the lithium oxalate solution, stirring, evaporating, crystallizing, and separating out lithium oxalate crystal on the surface of the precipitate to form precursor powder with a coated structure. The prepared powder has the advantages of uniform mixing, fine grains, high purity and the like; through the formed specific coated structure, the calcination temperature of the powder is low, the sintering time of the powder is short, and the room-temperature lithium ion electric conductivity of the sintered lithium lanthanum zirconium oxide is more than 2.2*10<-4>S / cm. According to the method, the process is simple, the cost is low, the preparation conditions are easy to control, and the prepared solid electrolyte is good in electrochemical stability and high in electric conductivity and can be used for preparing all-solid-state lithium ion batteries.
Owner:WUHAN UNIV OF TECH

Method for preparing tungsten carbide nano-powder

The invention discloses a method for preparing tungsten carbide nano-powder. The method comprises the following steps of: dissolving ammonium paratungstate and citric acid in deionized water, and performing complexation in water bath; filtering and drying to obtain a precursor of tungsten oxide, and calcining under air atmosphere to obtain tungsten oxide powder; putting the obtained tungsten oxide powder in a tube furnace, introducing ammonia and nitriding to obtain tungsten nitride powder; mixing the obtained tungsten nitride powder and carbon black, performing ball milling, performing rotary evaporation drying and performing heat treatment under the air pressure of less than 200 Pa or inert atmosphere; or putting the obtained tungsten nitride powder in the tube furnace, and introducing the mixed gas of methane and hydrogen and carbonizing to obtain the tungsten carbide nano-powder. The preparation process of the method is simple, practical, and high in controllability and can easily realize large-scale production; the particle size of the prepared powder is small, the particle size distribution is uniform and the aggregation degree is low; and the method has high sintering activity, and densification can be realized by performing hot pressing sintering at the temperature of 1,700 DEG C.
Owner:SHANGHAI INST OF CERAMIC CHEM & TECH CHINESE ACAD OF SCI

Pressureless sintering preparation method for boron carbide ceramic

The invention relates to a pressureless sintering preparation method for boron carbide ceramic, and coarse particle powder with the particle size larger than 2 micrometers is taken as raw materials. The method comprises the following steps that 70-80 wt % of boron carbide powder (D50>=2 micrometers), 4-8 wt% of carbon powder and 0.7-2 wt% of yttrium oxide powder are put into a ball mill mixing container, ball mill slurrying is performed after binding agents, dispersing agents and deionized water are added, and the solid phase content of obtained slurry is 25-45 wt%; the obtained slurry is prepared into granulating powder with a spray drying granulating machine; the granulating powder is pressed into green bodies by adopting a dry-pressing molding technology or isostatic cool pressing molding technology at 100-200 MPa; the green bodies are placed in a vacuum furnace, a vacuum or normal pressure sintering mode is adopted, heat preservation is performed for 0.5-5 h at the temperature of 2000 DEG C-2300 DEG C, sintering is completed, and then the boron carbide ceramic is obtained. According to the pressureless sintering preparation method for the boron carbide ceramic, due to the fact that the coarse particle boron carbide powder which is low in cost is adopted as the raw materials and the pressureless sintering technology capable of achieving scale production is adopted, the preparation cost of the boron carbide ceramic can be greatly lowered, and therefore the method is suitable for the fields of nuclear power, semiconductor equipment, armor protection and the like.
Owner:CHINA WEAPON SCI ACADEMY NINGBO BRANCH

Carbon-nanotube-reinforced aluminum-base composite material

The invention discloses a carbon-nanotube-reinforced aluminum-base composite material which is prepared by the following steps: 1) carrying out high-speed shear mixing on predispersed carbon nanotubes and an adhesive until the adhesive is uniformly coated on the carbon nanotube surface, adding pure aluminum powder or aluminum alloy powder, and carrying out high-speed shear mixing until the carbon nanotubes are uniformly distributed on the pure aluminum powder or aluminum alloy powder surface, thereby obtaining first composite powder; 2) carrying out ball milling on the obtained first composite powder to obtain second composite powder; and 3) sequentially carrying out sinter molding and hot extrusion molding to obtain the carbon-nanotube-reinforced aluminum-base composite material. The adverse factors capable of resulting in stratification due to density variation are eliminated, so that the CNTs (carbon nanotubes) and the aluminum powder are uniformly mixed while keeping favorable sintering activity, and the bonding strength between the CNTs and aluminum powder is enhanced to obtain favorable interfacial combination. The combined action of work hardening and grain refining reinforcement on the base can be utilized to enhance the aluminum base, so that the tensile strength and wear resistance of the composite material are greatly enhanced.
Owner:STATE GRID CORP OF CHINA +2
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products