Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

768 results about "Pressureless sintering" patented technology

Pressureless sintering. Pressureless sintering is the sintering of a powder compact (sometimes at very high temperatures, depending on the powder) without applied pressure. This avoids density variations in the final component, which occurs with more traditional hot pressing methods.

Ceramic composite material for thin-strip casting side sealing plate and preparation method thereof

The invention provides a ceramic composite material for a thin-strip casting side sealing plate and a preparation method thereof, relating to a ceramic composite material and a preparation method thereof and solving the problems that the traditional side sealing plate has high heat conductivity, serious abrasion, poor seal, high preparation cost and large energy consumption, can not be secondarily processed or reused. The ceramic composite material consists of zirconia, boron nitride and additives. The preparation method comprises the following steps: 1, weighing raw materials; 2, ball milling and mixing the raw materials; 3, drying to obtain uniform mixed powder; and 4, carrying out hot pressed sintering, pressureless sintering, air pressure sintering or hot isostatic pressed sintering on the mixed powder, so as to obtain the ceramic composite material for a thin-strip casting side sealing plate. The compactness of the ceramic composite material is 94%-99%, the bending strength of the ceramic composite material, tested by a three-point bending test at room temperature, is 260-420MPa, and the fracture toughness of the ceramic composite material, tested by a unilateral coped beam method, is 3-8 MPa.m<1/2>. The ceramic composite material can be widely applied to the field of side sealing plate materials.
Owner:HARBIN INST OF TECH

Micro-nano mixed welding paste capable of being used for pressureless sintering and preparation method thereof

The invention provides a micro-nano mixed welding paste capable of being used for pressureless sintering preparation and a packaging method thereof. The interior of a material is filled with micron-sized spherical particles as a matrix, and the nano-particles are uniformly filled in the material, sintering driving force is provided, so that the whole material is subjected to pressureless sinteringforming at a low temperature. The preparation method comprises the following steps of S1, preparing micron particles with specific sizes and carrying out acid washing and drying; S2, mechanically stirring the micron particle powder with a surfactant, an organic carrier and an organic solvent to obtain a mixture A; S3, fully mixing the metal nano-particles with a dispersing agent, the organic carrier and the organic solvent to obtain a mixture B; and S4, mixing the mixture A and the mixture B to obtain the micro-nano mixed welding paste. According to the micro-nano mixed welding paste capableof being used for pressureless sintering and the preparation method thereof, the welding paste solves problems of volume shrinkage and cracks of the nano welding paste during sintering, the reliability of the welding spots is improved, and the welding paste can be used for packaging and manufacturing for power devices; and according to the scheme, the production process of the welding paste is simplified, the preparation process is green and environment-friendly, the packaging method provided is simple and practical and is beneficial to market popularization.
Owner:深圳市先进连接科技有限公司

Preparation method of complex phase ceramic material containing zirconium boride

InactiveCN102173813AControlling chemical reaction driving forcesControl the severity of the reactionBorideMaterial defect
The invention relates to a preparation method of a complex phase ceramic material containing zirconium boride, relating to a preparation method of ceramic materials and aiming to overcome the material defects of abnormal crystal grain growth, phase clustering, and the like which are caused by difficult control and overhigh partial temperature in the traditional reaction sintering preparation method and solve the problems of tissue uniformity and comprehensive mechanical property of the complex phase ceramic material. The preparation method comprises the following steps of: 1, placing zirconium oxide and a boron-containing compound or a boron-containing composite into a ball mill to form composite powder; 2, drying the composite powder, then crushing, and screening through a sieve of 200 meshes to obtain uniform mixed powder; 3, carrying out mould pressing or cold isostatic pressing on the mixed powder, and then carrying out pressureless sintering, hot pressing sintering or hot isostatic pressing sintering to obtain the complex phase ceramic material containing the zirconium boride. The complex phase ceramic material containing the zirconium boride has uniform crystal grain size and distribution, the fracture toughness of 3.5-7.5 MPa.m<-1 / 2> and the bending strength of 250-700 MPa and can be used in the field of high-temperature resistant structural members and the like.
Owner:HARBIN INST OF TECH

Preparation method of high-toughness boride-carbide composite ceramic

A preparation method of a high-toughness boride-carbide composite ceramic relates to a preparation method of a boride-carbide composite ceramic and solves the problems that in the conventional preparation of the boride-carbide composite ceramic, due to high sintering temperature and high sintering pressure, the preparation cost is high and the prepared boride-carbide composite ceramic is poor in mechanical property and fracture toughness. The preparation method of the high-toughness boride-carbide composite ceramic comprises the following steps : adding a dispersing medium into boride and carbide; uniformly mixing the dispersing medium, the boride and the carbide; pressing the mixture into a blank material; and sintering the blank material in a two-section pressure-free sintering way at alow temperature and a high temperature sequentially. The sizes and the distribution of grain crystals in the boride-carbide composite ceramic which is prepared under the low-temperature pressure-freeconditions are uniform; the fracture toughness is as high as 5.0-13MPa.m<-1/2>; and the bending strength is as high as 400-1000 MPa; the boride-carbide composite ceramic with excellent comprehensive mechanical property can be prepared; the preparation cost is reduced; and the application range is widened.
Owner:吉林长玉特陶新材料技术股份有限公司

Silicon carbide carbonized complex phase ceramic sealing material and preparation method thereof

InactiveCN101591169AImproved dry friction propertiesGood self-lubricating performanceWater basedHigh density
The invention relates to a silicon carbide carbonized complex phase ceramic sealing material, which comprises the following component in portion by weight: 100 portions of silicon carbide powder, 0.1 to 1 portion of boron carbide, 5 to 30 portions of carbon powder, 0.5 to 3 portions of binding agent PVA, and 0.5 to 1.5 portions of dispersing agent. A preparation method comprises the following steps in turn: (1) blending the raw materials in proportion and then adding the mixture into deionized water, and after ball milling and mixing, preparing the mixture into a water-based silicon carbide composite slurry of which the solid phase weight content is between 40 and 60 percent; (2) adopting a spraying granulating process to perform spray drying on the slurry to obtain silicon carbide granulated powder; (3) adopting a two-step mode of 140 MPa dry pressing pre-compaction and 200 MPa isostatic cool pressing final compaction to carry out forming on the granulated powder to obtain a high-density sealing material blank; and (4) putting the blank into a vacuum pressureless sintering furnace, raising the temperature to between 2,000 and 2,100 DEG C, keeping the temperature for 1 to 1.5 hours, and sintering the blank to obtain the silicon carbide carbonized complex phase ceramic sealing material.
Owner:东新密封有限公司

Method for preparing high-density cemented-carbide part with complicated shape and cutter

The invention provides a method for preparing high-density cemented-carbide part with a complicated shape and a cutter. In combination of 3D print technology, slurry injection and extraction of powder pressure, a negative mold of the part with the hollow thin wall can be made via 3D print technology. Slurry containing tungsten-cobalt type alloy is injected into the negative mold of the part and then cured in order to obtain a part blank made by tungsten-cobalt type alloy. By means of extraction of powder pressure and hot-pressed sintering, the high-density cemented-carbide part with the complicated shape and the cutter are made. The method for preparing the high-density cemented-carbide part with the complicated shape and the cutter has following beneficial effects: the method gives full play to advantages of arbitrary forming and high relative density of 3D printing and helps to overcome the defects that the mold (a force-transmitting medium) with the complicated shape by adoption of hot-pressing, cold-isostatically pressing, hot-isostatic pressing is difficult to manufacture and low density and easy cracking and deformation of a blank body by adoption of conventional pressureless sintering and negative pressure sintering; and a high-relative-density cemented-carbide product with arbitrary complicated shapes can be prepared.
Owner:UNIV OF SCI & TECH BEIJING

High-pressure sintering combined die and high-pressure rapid sintering method for preparing nanometer ceramic thereof

The invention discloses a high-pressure sintering combined die, which comprises a hollow cylindrical outer die, a hollow cylindrical inner die, one pair of cylindrical inner pressure heads, one pair of cylindrical metallic laminations, one pair of cylindrical ceramic laminations and one pair of cylindrical outer pressure heads, wherein the side face of the outer die is provided with a through hole into which a thermocouple is inserted; the hollow cylindrical inner die is arranged in the hollow cavity body of the outer die; the side face of the inner die is provided with a blind hole into which the thermocouple is inserted; the outer die and the inner die are in close fit, and the centre line of the through hole into which the thermocouple is inserted on the side face of the outer die and the centre line of the blind hole into which the thermocouple is inserted on the side face of the inner die coincide; the cylindrical inner pressure heads are half inserted into the upper end and the lower end of the hollow cavity body of the inner die; the inserted inner pressure heads and the hollow cavity body of the inner die form a die cavity; the cylindrical metallic laminations are arranged outside the inner pressure heads; the cylindrical ceramic laminations are arranged outside the cylindrical metallic laminations; the cylindrical outer pressure heads are arranged outside the cylindrical ceramic laminations; and the ceramic laminations and the outer pressure heads are in the close fit with the outer die. The invention also discloses a high-pressure rapid sintering method for preparing a nanometer ceramic by adopting the die. By adopting the die and the sintering method disclosed by the invention, the rapid low-temperature compact sintering can be realized on a nanometer ceramic material.
Owner:XI AN JIAOTONG UNIV

Preparation method of zirconium diboride ceramic with in-situ-introduced boron as additive

InactiveCN103011827AAvoid introducingGood for maintaining excellent performanceArgon atmosphereZirconium dioxide
The invention relates to the field of structural ceramic manufacturing, in particular to a preparation method of zirconium diboride ceramic with in-situ-introduced boron as an additive. The preparation method comprises the following steps: firstly, performing ball milling and mixing zirconium dioxide and elemental boron in a mol ratio of (1: 3.5)-(1: 4.5), and drying to obtain ZrO2/ B mixed powder; secondly, putting the ZrO2/ B mixed powder into a graphite crucible, and performing high-heat treatment at the air pressure of below 200Pa to obtain ZrB2/ B powder; and finally, sieving the obtained ZrB2/ B powder, performing isostatic pressing, putting the ZrB2/ B powder into the graphite crucible, performing pressureless sintering in an argon atmosphere, controlling the sintering temperature at 1800 -2100 DEG C, the heat-preserving time at 1-3 hours and the heating rate at 10-50 DEG C/ min, and preserving heat for 0.5 hours at 1500-1700 DEG C to obtain the compact zirconium diboride ceramic. By the preparation method, a ball milling medium is not introduced, the impurity content is reduced, excellent performance of the zirconium diboride ceramic can be maintained easily, and the sintering compactness of the zirconium diboride ceramic is realized at a relatively low temperature (2000 DEG C).
Owner:FUDAN UNIV

High purity zirconium boride / hafnium boride and preparation of superhigh temperature ceramic target material

ActiveCN101468918AAvoid the disadvantages of poor dry mixingEnsure safetyBorideHafnium
The invention discloses a method for preparing a high-purity ultrahigh-temperature ceramic target material which belongs to the technical field of ceramic target materials, and in particular provides a method for preparing high-purity zirconium / hafnium boride powder and a ceramic target material thereof. The method comprises the steps of taking high-purity Zr powder, Hf powder and high-purity B powder as raw materials, adopting a self-propagating method to prepare high-purity ZrB2 and HfB2 powder respectively and then adopting a high-temperature high-pressure hot-pressing molding process to prepare a high-purity dense zirconium / hafnium boride ultrahigh-temperature ceramic target material, wherein the relative density of the target material reaches 95 to 99 percent. Relative to the prior art, metal powder in the method is slightly excessive when the materials are mixed, so as to make up for the metal loss during self-propagating reaction and further guarantee the component unicity of products. Relative to pressureless sintering, the sintering temperature needed in the method is greatly lowered; in addition, as the hot-pressing process adopts two-stage temperature, blank is uniform in temperature field, so as to ensure that the target material with uniform density can be obtained in the late hot-pressing process.
Owner:有研资源环境技术研究院(北京)有限公司

Rare earth oxide solid solution ceramic scintillator and preparation method thereof

The invention discloses a rare earth oxide solid solution ceramic scintillator and a preparation method thereof. The main component of the ceramic scintillator is Gd2xLu2yY2(1-x-y-z)Eu2zO3 (the x is more than or equal to 0.1 and less than or equal to 0.6, the y is more than or equal to 0.1 and is less than or equal to 0.4, and the z is more than or equal to 0.01 and less than or equal to 0.1), and the ceramic scintillator has a crystal structure with a cubic Ia3 point group. Ceramic powder can be synthesized by a chemical coprecipitation method. The coprecipitation method adopts ammonia, ammonium hydrogen carbonate or a mixed solution of the ammonium water and the ammonium hydrogen carbonate as a precipitating agent, titrates the precipitating agent into a solution of gadolinium nitrate, lutecium nitrate, yttrium nitrate and europium nitrate to obtain a precipitate, and then the precipitate is dried and calcined to obtain nano-powder. The obtained powder is pressed into a ceramic blank through an isostatic compaction method, then the pressureless sintering is performed in vacuum or hydrogen atmosphere, the sintering temperature is between 1,600 and 1,900 DEG C, transparent Gd2xLu2yY2(1-x-y-z)Eu2zO3 ceramic can be obtained, a ceramic product with the needed dimension is prepared after the cutting, grinding and polishing, and the transmission rate of the ceramic in a visible region (400-800 nanometers) is more than or equal to 65 percent. The ceramic scintillator emits red light with a main wavelength of 610 nanometers under the excitation of ultraviolet light or X rays, and can be used for scintillating materials of imaging and detection of medical and industrial X rays.
Owner:CHINA JILIANG UNIV

NiAl intermetallic compound porous material and preparation method thereof

The invention relates to a NiAl intermetallic compound porous material and a preparation method thereof, which belong to the field of inorganic materials. The invention provides a NiAl intermetallic compound porous material with good combination property and a preparation method thereof. The novel NiAl intermetallic compound porous material has communicated three-dimension solid network apertures and the porosity of 30 percent and 55 percent, the biggest pore is from 5 microns and 50 microns; wherein, the atom weight portions of Ni and Al in the material is equal to 60 to 90 : 10 to 40. The preparation method is that Ni and Al powders with a certain granularity are firstly mechanically mixed evenly, and then go through compression molding cold forming, finally the porous material is obtained by a sectional type vacuum pressureless sintering mode. The method has low energy consumption and almost no contamination, and the porous structures can be controlled independently. The NiAl intermetallic compound porous material of the invention has excellent high-temperature mechanical properties, good acid-resistance and alkali-resistance properties, high-temperature oxidation resistance property and excellent filtering quality, and can be used in the fields such as high temperature, separation and the like.
Owner:CHENGDU INTERMENT TECH

Porous ceramic carrier for high-temperature and high-pressure inorganic filtering membrane and preparation method for porous ceramic carrier

The invention discloses a porous ceramic carrier for a high-temperature and high-pressure inorganic filtering membrane and a preparation method for the porous ceramic carrier. The porous silicon carbide ceramic carrier is prepared by silicon carbide, a binding agent and a pore-forming agent, wherein the mass ratio of the silicon carbide to the binding agent is 80-90:10-20, and the utilization quantity of the pore-forming agent is 35-45% of the sum of the volumes of the silicon carbide, the binding agent and the pore-forming agent. The preparation method includes adding the binding agent and the pore-forming agent in silicon carbide powder; performing ball milling, drying and vacuum heat casting forming; and performing pressureless sintering for a formed blank. Sintering temperature rangesfrom 1250 DEG C to 1350 DEG C, and heat insulation time ranges from 2 hours to 4 hours. As raw materials form main materials by means of fine size grading, the binding agent and the pore-forming agent are added by a special process, technologies such as unique vacuum heat casting forming and the like are adopted, and mechanical strength and porosity of the porous carrier can be improved effectively. The prepared silicon carbide porous ceramic carrier has excellent performances of fine thermal shock resistance, low coefficient of thermal expansion, fine mechanical and chemical stability at high temperature and under high pressure, and the like.
Owner:TSINGHUA UNIV

Preparation method of micro-nano particle reinforced aluminium matrix composite

The invention provides a preparation method of a micro-nano particle reinforced aluminium matrix composite and belongs to the field of an aluminium matrix composite preparation technology. The method comprises the following steps: carrying out high-energy ball milling on powdery aluminium base alloy and reinforcement powder; carrying out vacuum drying on the prepared composite powder after the end of ball milling and sieving; and carrying out supersonic vibration on the dried and sieved composite powder and carrying out pressureless sintering on the dispersible powder by controlling sintering atmosphere so as to prepare a fully-densified powder metallurgy aluminum matrix composite blank, and carrying out hot working such as extrusion, rolling, die forging and the like on the blank so as to obtain the required aluminium matrix composite. By a brand-new activated sintering densification technology, the composite powder directly undergoes supersonic vibration and densification sintering under atmosphere protection without pressing so as to prepare the fully-densified micro-nano particle reinforced aluminium matrix composite blank. The prepared aluminium matrix composite has uniform reinforcement phase distribution and excellent product performance. The method has no limit in size and shape of the product, is low-cost and is suitable for large-scale production.
Owner:天津海力特新材料有限公司

Preparation method for gamma-AlON transparent ceramic powder

The invention relates to a method for preparing pure-phase gamma-AlON transparent ceramic powder by carbothermal reduction of gamma-Al2O3, and belongs to the field of preparation of transparent ceramic materials. According to the preparation method, nano-alpha-Al2O3 and activated carbon are taken as raw materials; powder is filled in a graphite crucible loosely, wherein an aluminum oxide plate is paved at the bottom of the graphite crucible; an air hole which penetrates through the powder is preformed at the aluminum oxide plate; a graphite cover provided with fine and dense air holes is used for covering the hole; the pure-phase gamma-AlON transparent ceramic powder is prepared by adopting a two-step heating process in a flowing nitrogen environment with a micro positive pressure. By the adoption of the preparation method, the vacuumizing difficulty can be effectively reduced, powder is prevented from scattering in a vacuumizing stage, the time required for discharging adsorbed gas can be greatly shortened, the vacuumizing speed is high, and the preparation efficiency of the gamma-AlON powder is greatly improved; the obtained gamma-AlON powder phase has stable and reliable compositions and can be used for pressure-less sintering preparation of AlON transparent ceramics with high transmittance; the process is simple and is easy to operate, and is suitable for industrial production.
Owner:DALIAN MARITIME UNIVERSITY
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products