Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

776 results about "Ion bombardment" patented technology

Ion bombardment. noun. Physics Chemistry. The fact of being struck by a beam of ions; specifically the process of bombarding a surface with ions (usually ions of an inert gas) as a means of removing impurities.

Non-vacuum solar spectrum selective absorption coating and preparation method thereof

The invention relates to a non-vacuum solar spectrum selective absorption coating and a preparation method thereof. The preparation method comprises the following steps: (1) selecting copper or stainless steel with low infrared emissivity as a base material; (2) selecting oxide resistant to high-temperature oxidation, nitride and complex or doped oxide as a film material, wherein a metal or an alloy serves as a bonding force increased layer, metal nitride or pure metal serves as a high infrared reflecting layer, an absorption layer is composed of two conducting particle ceramic layers with different metal nitride conducting particle volume fractions, and aluminium nitride and aluminium oxide serve as an antireflection layer; (3) controlling the components and contents of different film materials by controlling gas flow and sputtering power; (4) cleaning the base material before the base material is placed into a vacuum chamber, and carrying out argon ion bombarding on the surface of the base material before sputtering is carried out; and (5) obtaining a multilayer coating, wherein the thickness of the coating is less than 500nm, and the coating has high absorption rate alpha (0.9-0.97) in the solar spectrum range (0.3-2.5microns) and has extremely low emissivity epsilon (0.02-0.18) in the infrared region (2.5-50microns).
Owner:GRIMAT ENG INST CO LTD

Ion beam process for deposition of highly abrasion-resistant coatings

An ion beam deposition method is provided for manufacturing a coated substrate with improved abrasion resistance, and improved lifetime. According to the method, the substrate is first chemically cleaned to remove contaminants. In the second step, the substrate is inserted into a vacuum chamber, and the air in said chamber is evacuated. In the third step, the substrate surface is bombarded with energetic ions to assist in the removal of residual hydrocarbons and surface oxides, and to activate the surface. <DEL-S DATE="20010724" ID="DEL-S-00001">Alter<DEL-E ID="DEL-S-00001"> <INS-S DATE="20010724" ID="INS-S-00001">After <INS-E ID="INS-S-00001">the substrate surface has been sputter-etched, a protective, abrasion-resistant coating is deposited by ion beam deposition. The ion beam-deposited coating may contain one or more layers. Once the chosen thickness of the coating has been achieved, the deposition process on the substrates is terminated, the vacuum chamber pressure is increased to atmospheric pressure, and the coated substrate products having improved abrasion-resistance are removed from the vacuum chamber. The coated products of this invention have utility as plastic sunglass lenses, ophthalmic lenses, bar codes scanner windows, and industrial wear parts that must be protected from scratches and abrasion.
Owner:MORGAN ADVANCED CERAMICS

Stress tunable tantalum and tantalum nitride films

The present disclosure pertains to our discovery that residual stress residing in a tantalum film or tantalum nitride film can be controlled (tuned) during deposition by adjusting at least two particular process variables which have counteracting effects on the residual film stress. By tuning individual film stresses within a film stack, it is possible to balance stresses within the stack. Process variables of particular interest include: power to the sputtering target process chamber pressure (i.e., the concentration of various gases and ions present in the chamber); substrate DC offset bias voltage (typically an increase in the AC applied substrate bias power); power to an ionization source (typically a coil); and temperature of the substrate upon which the film is deposited. The process chamber pressure and the substrate offset bias most significantly affect the film tensile and compressive stress components, respectively. The most advantageous tuning of a sputtered film is achieved using high density plasma sputter deposition, which provides for particular control over the ion bombardment of the depositing film surface. When the tantalum or tantalum nitride film is deposited using high density plasma sputtering, power to the ionization source can be varied for stress tuning of the film. We have been able to reduce the residual stress in tantalum or tantalum nitride films deposited using high density plasma sputtering to between about 6x10+9 dynes / cm2 and about -6x10+9 dynes / cm2 using techniques described herein.
Owner:APPLIED MATERIALS INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products