Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

719 results about "Catalytic hydrolysis" patented technology

The catalytic action of enzymes allows the hydrolysis of proteins, fats, oils, and carbohydrates. As an example, one may consider proteases (enzymes that aid digestion by causing hydrolysis of peptide bonds in proteins).

Catalyst for hydrogen production by catalyzing and hydrolyzing borohydride and preparation method thereof

The invention relates to hydrogen production and hydrogen storage technologies and materials, in particular to a catalyst for catalytic hydrolysis of borane for the hydrogen production and a preparation method thereof, thereby solving the problems that the direct application of powder catalyst in a catalytic hydrolysis solid-liquid reaction system can cause the loss of the catalyst, the catalytic hydrolysis reaction is difficult to control and the hydrolysis by-products are difficult to be recovered, etc. The catalyst is composed of an active component and a carrier; the active component is a binary, ternary or multinary alloy or a single precious metal or the combination thereof which is composed of one or more transition metals, rare earth metals or precious metals and metalloids; the active component is deposited on the carrier through the improved chemical plating technology, the surface thereof is rough and porous, and the structure of the prepared catalyst is the amorphous or the nanocrystalline structure. The preparation method has simple preparation process, high preparation efficiency and convenient large-scale preparation; the sources of the used raw materials are rich; the catalytic activity of the prepared supported catalyst is high, the real-time control of the catalytic hydrolysis reaction of the borane can be realized, the catalytic performance is stable, and the catalyst can be repeatedly used for a plurality of times.
Owner:INST OF METAL RESEARCH - CHINESE ACAD OF SCI

Substrate with surface-enhanced Raman scattering activity and preparation method thereof

The invention provides a substrate with surface-enhanced Raman scattering activity and a preparation method thereof, and the method comprises the following steps: the glass base surface is subjected to hydroxylation and amination treatment; catalytic hydrolysis is carried out on ethyl orthosilicate under the alkali condition by taking alcohol as a solvent; Silica microspheres with even size and smooth surface are prepared by an oscillation method; silane coupling agent of which the tail end is provided with amino is assembled on the surface of the silica microspheres; silver sol obtained by reducing sodium borohydride to silver nitrate through oscillation is assembled on the surface of SiO2-NH2NPs, and is diffused in water again after centrifugal separation and washing by distillated water; self assembly is carried out on the silver sol after being placed in SiO2@Ag NPs dispersion for 6-12h; the SERS active substrate is obtained after taking out from water and drying. In the SERS active substrate of the invention, the active particles and the substrate are combined firmly, thus being applicable to detecting unimolecular Raman signals in aqueous solution; the substrate can be used for SERS detection repeatedly, thus improving repeated utilization ratio of the substrate.
Owner:NORTHWEST NORMAL UNIVERSITY

Method for removing heavy metals from activated sludge

A method for removing heavy metals from activated sludge is characterized in that through chemical catalytic hydrolysis and solid-liquid separation, the heavy metals exist in the filtrate; the filtrate is subjected to rough filtration pretreatment and ultrafiltration membrane separation in sequence; the permeate adopts adsorbent polyhumic acid to adsorb the heavy metals; the removal rate of the adsorbed heavy metals is higher than 95%; ultrasonic waves are used for desorption treatment; the heavy metals are in the state of hydroxide precipitation so as to be desorbed from the adsorbent in thedissolved state; the adsorbent is regenerated and reused; the heavy metal hydroxides are prepared for ferrite to recycle through recycling or harmless treatment, the process of harmless treatment is carried out through cement solidification and filling after stabilization; the concentrated solution of the ultrafiltration membrane and reverse osmosis membrane is subjected to vacuum evaporation andconcentration to produce fertilizers; the permeate of the reverse osmosis membrane is pure water which can be reused; the desorbed alkaline solution containing polyhumic acid is subjected to adsorbent recycling; and the regenerated acid liquid is recycled for acid blending, thus realizing zero emission of closed cycle. The method is conductive to environmental protection and resource recycling, simple in process, lower in cost and suitable for popularization and use.
Owner:SHANGHAI MULIANG IND CO LTD

Device and method for chemical hydride catalytic-hydrolysis hydrogen production suitable for onboard hydrogen source

The invention relates to a hydrogen storage and production technology, in particular to a device and a method for chemical hydride catalytic-hydrolysis hydrogen production suitable for an onboard hydrogen source. The hydrogen production device mainly comprises a catalytic reaction chamber provided with a heat exchanger, a gas-liquid separator, a fuel pump and a controlling unit, and the hydrogen production method is used for controlling the contact and the separation between liquid fuel and catalyst to achieve the purpose of prompt hydrogen production as required. Since the heat exchanger is additionally arranged at the periphery or inside the catalytic reaction chamber, the heat from hydrolysis reaction is effectively utilized, the initial temperature of the liquid fuel is remarkably improved, the hydrogen-production rate of the device, the fuel conversion ratio and the system energy efficiency are greatly improved; and in addition, due to the design of the controlling unit, the continuous automatic adjustment of the delivery rate of the liquid fuel is realized, the stable hydrogen pressure of the system is ensured, and the hydrogen-storage density of the device is improved when the hydrogen supply demand at the hydrogen use terminal is responded in real time. The provided device for prompting hydrogen production can provide the onboard hydrogen source for hydrogen fuel-cell vehicles and various military and civil portable power supplies.
Owner:INST OF METAL RESEARCH - CHINESE ACAD OF SCI

Preparation method of modified bio-charcoal based catalyst

The invention discloses a preparation method of a modified bio-charcoal based catalyst, which can remove carbonyl sulfide, carbon disulfide, and hydrogen cyanide at the same time. The bio-charcoal is taken as the carrier, a series of modifications is carried out to prepare the catalyst, the catalyst is applied to catalytic hydrolysis so as to simultaneously remove COS, CS2, and HCN; the work temperature of the catalyst is not higher than 100 DEG C, the removal rates of COS and CS2 are not less than 90%, the removal rate of HCN is not less than 70%; and the bio-charcoal based catalyst is prepared by the following steps: subjecting waste biomass to carbonization and activation in sequence so as to obtain the bio-charcoal carrier, then boiling the bio-charcoal carrier in a KOH solution, adding the bio-charcoal carrier in a metal salt solution to carry out ultrasonic impregnation, then burning the bio-charcoal carrier at a certain temperature; adding the burned bio-charcoal carrier into an alkaline solution to carry out ultrasonic impregnation, and finally drying to obtain the bio-charcoal based catalyst. The technology is concise, the operation is convenient, the operation is continuous, COS, CS2 and HCN in flue gas are removed and converted into valuable resources, and no secondary pollution is generated.
Owner:KUNMING UNIV OF SCI & TECH

Preparation method of Ru/C catalyst for preparing hydrogen by sodium borohydride hydrolysis

The invention discloses a preparation method of an Ru/C catalyst for preparing hydrogen by sodium borohydride hydrolysis, belonging to the technical field of portable hydrogen preparation. The preparation method comprises the following step of preparing the Ru/C catalyst by mainly using porous carbon materials as a carrier and using impregnation reduction. The supported Ru/C catalyst with small metal particle sizes and even dispersion is prepared by adding an addition agent in steeping fluid, selecting a proper reducing agent and reducing a pH value. The Ru/C catalyst has large specific area and higher mechanical strength, does not have a breaking phenomenon in a reaction process basically, and displays relatively high reaction activity in the catalytic hydrolysis reaction of a sodium borohydride alkaline solution, meanwhile, the service life (in particular refer to the time of the conversion rate which is larger than 40 percent for catalyzing sodium borohydride to prepare hydrogen) of the catalyst exceeds 150 hours, and the Ru/C catalyst has a better application prospect in the field of portable hydrogen preparation. The preparation method has mild condition, low cost and high productive rate, is beneficial to industrial production, and can not cause environment pollution.
Owner:EAST CHINA UNIV OF SCI & TECH

Method for using aluminum ash to prepare aluminum polychlorid and co-produce calcium fluoride

The invention discloses a method for using aluminum ash to prepare aluminum polychlorid and co-produce calcium fluoride. The method comprises the steps that filtrate and a filter cake are obtained through catalytic hydrolysis, filtration and washing of aluminum ash, and a fluorine rich solution is obtained through multiple recycling of the filtrate; an aluminum rich solution, washing liquid and acidolysis residue are obtained through acidolysis, filtration and washing of the filter cake; calcium fluoride and denitration ammonium hydroxide are prepared through precipitation and filtration of the fluorine rich solution; an aluminum polychlorid water purifying agent is prepared through polymerization mediation of the aluminum rich solution obtained through acidolysis, and a fireproof materialis prepared through drying and sintering of acidolysis residue. The method disclosed by the invention achieves thorough hydrolysis of aluminum nitride and directional enrichment and separation of impurity ions, the ammonia-nitrogen content of the aluminum polychlorid is low, the quality is high, the performance indexes are completely superior to the requirement of GB / T22627-2014 standard, the calcium fluoride purity is high, and the aluminum polychlorid can replace industrial calcium floride. The method solves the problem of safe treatment of aluminum ash, and achieves resource utilization, and the environmental, economical and social benefits are outstanding.
Owner:INST OF PROCESS ENG CHINESE ACAD OF SCI

Method for synthesizing cholesterol by using pregnenolone as raw material

InactiveCN105218609AOmit ring opening reactionReduce consumptionSteroidsCholesterolKetone
The invention provides a method for synthesizing cholesterol by using pregnenolone as a raw material. The method comprises the following steps: 1) adding potassium acetate into methyl alcohol, and performing a reaction on sulfonate to obtain 6-methoxyl-3,5-cyclo-5alpha-pregn-20-one; 2) performing a reaction on triphenylphosphine and 1-chloro-4-methylpentane in an aprotic solvent to obtain a 4-methylbutyltriphenyl phosphonium chloride solution; 3) adding potassium tert-butoxide into the 4-methylbutyltriphenyl phosphonium chloride solution, and performing a wittig reaction; 4) under the catalysis of a rhodium catalyst, performing an asymmetric hydrogenation reaction to obtain 6-methoxyl-3,5-cyclo-5alpha-cholestane; 5) performing a catalytic hydrolysis deprotection reaction by using sulfuric acid to obtain the cholesterol. The method provided by the invention has the advantages that six-step reactions in the conventional method are simplified into four-step reactions, and a ring-opening reaction in which a great number of hydrochloric acid and a large number of zinc powder are consumed in a route of using saponin as an initial raw material. The synthesizing method is simple in process, the consumption of the raw material and auxiliary materials is low, and the mole yield is high; the method is economical and environmentally friendly, and facilitates industrial implementation.
Owner:HUNAN KEREY BIOTECH

Ternary transition-metal catalyst for ammonia borane hydrolysis and preparation method thereof

The invention discloses a ternary transition-metal catalyst for ammonia borane hydrolysis and a preparation method thereof. The catalyst provided by the invention is a Ag0.04@CoxNi0.96-x(x=0-0.96) catalyst with a core-shell structure. According to the invention, ammonia borane is used as a reducing agent to directly reduce a mixed solution of silver nitrate, cobalt salt and nickel salt at different proportions to obtain the catalyst which is directly used for catalyzing ammonia borane hydrolysis. Due to the core-shell structure, the series of catalysts have high catalytic activity. By the adoption of the series of the catalysts for catalyzing ammonia borane hydrolysis at room temperature, the maximum hydrogen desorption rate can reach 1627.3 mlmin<-1>g<-1> and activation energy of the reaction is 28.54 kJmol<-1>. The core-shell structured ternary transition-metal catalyst has characteristics of small particle size, large specific surface area, many catalytic active sites and the like, is beneficial to catalytic hydrolysis of ammonia borane, has advantages of rich resources, low production cost and the like in comparison with a traditional noble metal catalyst, and is a promising catalyst.
Owner:天津天环光伏太阳能有限公司
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products