Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1230 results about "Arabinose" patented technology

Arabinose is an aldopentose – a monosaccharide containing five carbon atoms, and including an aldehyde (CHO) functional group. For biosynthetic reasons, most saccharides are almost always more abundant in nature as the "D"-form, or structurally analogous to D-glyceraldehyde. However, L-arabinose is in fact more common than D-arabinose in nature and is found in nature as a component of biopolymers such as hemicellulose and pectin.

Integrated process for separation of lignocellulosic components to fermentable sugars for production of ethanol and chemicals

A continuous and modular process converts lignocellulosic materials for the production of ethanol principally and / or chemicals such as methanol, butanediol, propanediol, hydrocarbon fuel, etc. Renewable lignocellulosic biomass such as but not all inclusive hardwoods (gum, beech, oak, sweet gum, poplar, eucalyptus, etc.), soft woods (pines, firs, spruce, etc.), corn stovers, straws, grasses, recycled papers, waste products from pulp and paper mills, etc can be used as feedstock. The process is designed to be modular and the feed entry point can be selected to adapt to different biomass feedstock. Lignocellulosic biomass such as hardwood and softwood are subjected to chemical / pressure treatment stages using potent and selective chemicals such as sodium chlorite / acetic acid (anhydrous) and chlorine / chlorine dioxide to separate the main components—lignin, cellulose (glucose) and hemicelluloses (xylose, arabinose, galactose)—into three process streams. The separated carbohydrates are further subjected to washing, cleaning, neutralization, and / or mild hydrolysis and subsequently fermented to produce ethanol. Residual lignin and extractives remained with the cellulose are removed by chemical treatment steps to enhance the fermentations of cellulose. Pre-hydrolysate after neutralization to neutralize and remove toxic components such as acetic acid, furfural, phenolics, etc. containing (xylose, arabinose, galactose) and hexoses (glucose) can be either separately or together with the purified cellulosic fraction fermented to produce ethanol. Approximately 100 gallons of ethanol, suitable to be used as a fuel, can be produced from one dried ton of wood. Significant amount of lignin are separated as a by-product and can be converted to hydrocarbon fuel, surfactant, drilling aid, or can be incinerated for generation of power and steam.
Owner:NGUYEN XUAN NGHINH

Compositions comprising a polysaccharide component and one or more coating layers

The present disclosure provides compositions comprising a plurality of agglomerates comprising a polysaccharide component comprising xylose and arabinose, wherein the ratio of xylose to arabinose is at least about 3:1, by weight; wherein the compositions further comprise:
    • (i) optionally, a first surrounding layer which surrounds the agglomerate, wherein the first surrounding layer is a hydrophobic layer; and
    • (ii) optionally, a second surrounding layer which surrounds the agglomerate, wherein the second surrounding layer is a hydrophilic layer;
wherein the compositions comprise at least one of the first surrounding layer and the second surrounding layer, and wherein when the agglomerate comprises the first surrounding layer and the second surrounding layer then the first surrounding layer is a preceding layer relative to the second surrounding layer.
In another embodiment, the disclosure provides compositions comprising a plurality of polysaccharide particles, wherein the polysaccharide particles comprise a polysaccharide component comprising xylose and arabinose, wherein the ratio of the xylose to the arabinose is at least about 3:1, by weight, and wherein the polysaccharide particles have a mean particle size distribution of from about 0.001 microns to about 150 microns, wherein the polysaccharide particles each, independently, comprise:
    • (i) optionally, a first surrounding layer which surrounds the particle, wherein the first surrounding layer is a hydrophobic layer; and
    • (ii) optionally, a second surrounding layer which surrounds the particle, wherein the second surrounding layer is a hydrophilic layer;
wherein the polysaccharide particles each, independently, comprise at least one of the first surrounding layer and the second surrounding layer, and wherein when the particle comprises the first surrounding layer and the second surrounding layer then the first surrounding layer is a preceding layer relative to the second surrounding layer.
The present compositions are useful for the treatment of a variety of benefits, including providing treatment for gastrointestinal conditions or providing other gastrointestinal benefits.
Owner:THE PROCTER & GAMBLE COMPANY

Co-production of xylose, xylitol and arabinose from agricultural and forestry wastes

The invention relates to a clean technique for co-producing xylose, xylitol and arabinose from agricultural and forestal waste, belonging to the field of utilization of agricultural and forestal waste. The technique comprises the following steps: pretreating and preprocessing the raw material, and hydrolyzing in a thermophilic digestion mode to prepare a hemicellulose hydrolysate; after centrifugalizing to remove solid residues, carrying out TiO2-loaded activated carbon photocatalysis or ion exchange resin decolorization and detoxification treatment on the hydrolysate; carrying out MVR (mechanical vapor recompression) concentration treatment and gradient-cooling crystallization to obtain a xylose product and a xylose mother solution; fermenting L-arabinose unconverted xylitol fermentationhigh-yield strain xylitol by using the xylose mother solution as the medium to produce the xylitol; centrifugalizing to remove thalli, and carrying out decolorization and desalting treatment by membrane-process or resin adsorption; separating by using a simulated moving bed or chromatographic separation technology to obtain a xylitol phase and an L-arabinose phase; and carrying out MVR or vacuum concentration treatment on the two phases, and crystallizing in a gradient programmed cooling mode to respectively obtaining a xylitol product and an L-arabinose product, wherein the two mother solutions can be recycled.
Owner:BEIJING UNIV OF CHEM TECH

Superparamagnetic Nanoparticles Based on Iron Oxides with Modified Surface, Method of Their Preparation and Application

The subject of the invention is superparamagnetic nanoparticle probes based on iron oxides, to advantage magnetite or maghemite, with modified surface, coated with mono-, di- or polysaccharides from the group including D-arabinose, D-glucose, D-galactose, D-mannose, lactose, maltose, dextrans and dextrins, or with amino acids or poly(amino acid)s from the group including alanine, glycine, glutamine, asparagine, histidine, arginine, L-lysine, aspartic and glutamic acid or with synthetic polymers based on (meth)acrylic acid and their derivatives selected from the group containing poly(N,N-dimethylacrylamide), poly(N,N-dimethylmethacrylamide), poly(N,N-diethylacrylamide), poly(N,N-diethylmethacrylamide), poly(N-isopropylacrylamide), poly(N-isopropylmethacrylamide), which form a colloid consisting of particles with narrow distribution with polydispersity index smaller than 1.3, the average size of which amounts to 0.5-30 nm, to advantage 1-10 nm, the iron content is 70-99.9 wt. %, to advantage 90 wt. %, the modification agent content 0.1-30 wt. %, to advantage 10 wt. %.
The particles of size smaller than 2 nm with polydispersity index smaller than 1.1 can be obtained by a modified method of preparation.
Superparamagnetic nanoparticle probes according to the invention are prepared by pre-precipitation of colloidal Fe(OH)3 by the treatment of aqueous 0.1-0.2M solution of Fe(III) salt, to advantage FeCl3, with less than an equimolar amount of NH4OH, at 21° C., under sonication, to which a solution of a Fe(II) salt, to advantage FeCl2, is added in the mole ratio Fe(III)/Fe(II)=2 under sonication and the mixture is poured into five- to tenfold, to advantage eightfold, molar excess of 0.5M NH4OH. The mixture is left aging for 0-30 min, to advantage 15 min, and then the precipitate is repeatedly, to advantage 7-10 times, magnetically separated and washed with deionized water. Then 1-3 fold amount, to advantage 1.5 fold amount, relative to the amount of magnetite, of 0.1 M aqueous solution of sodium citrate is added and then, dropwise, 1-3 fold amount, to advantage 1.5 fold amount, relative to the amount of magnetite, of 0.7 M aqueous solution of sodium hypochlorite. The precipitate is repeatedly, to advantage 7-10 times, washed with deionized water under the formation of colloidal maghemite to which, after dilution, is added dropwise, to advantage under 5-min sonication, an aqueous solution of a modification agent, in the weight ratio modification agent/iron oxide=0.1-10, to advantage 0.2 for amino acids and poly(amino acid)s and 5 for saccharides.
The particles smaller than 2 nm with polydispersity index smaller than 1.1 are prepared by mixing at 21° C. 1 volume part of 10-60 wt. %, to advantage 50 wt. %, of an aqueous solution of a saccharide, disaccharide or polysaccharide, such as D-arabinose, D-glucose, D-galactose, D-mannose, lactose, maltose, dextran and dextrins, and 1 volume part of aqueous solution of a Fe(II) and Fe(III) salt, to advantage FeCl2 and FeCl3, where the molar ratio Fe(III)/Fe(II)=2. A 5-15%, to advantage 7.5%, solution of NH4OH is added until pH 12 is attained and the mixture is heated at 60° C. for 15 min. The mixture is then sonicated at 350 W for 5 min and then washed for 24 h by dialysis in water using a membrane with molecular weight cut-off 14,000 until pH 7 is reached. The volume of solution is reduced by evaporation so that the final dry matter content is 50-100 mg/ml, to advantage 80 mg per 1 ml.
Superparamagnetic nanoparticle probes according to the invention can be used for labelling cells used in magnetic resonance imaging for monitoring their movement, localization, survival and differentiation especially in detection of pathologies with cell dysfunction and of tissue regeneration and also for labelling and monitoring cells administered for cell therapy purposes, in particular embryonal stem cells, fetal stem cells, stem cells of an adult human including bone marrow stem cells, olfactory glial cells, fat tissue cells, in the recipient organism by magnetic resonance.
The preparation of labelled cells proceeds by adding to the complete culture medium 5-20 μl, to advantage 10 μl, of a colloid containing 0.05-45 mg iron oxide per ml, to advantage 1-5 mg iron oxide per ml of the medium, and culturing the cells for a period of 1-7 days, to advantage for 1-3 days, at 37° C. and 5% of CO2.
Owner:INST OF MACROMOLECULAR CHEM ASCR V V I +1

Yeast expressing saccharolytic enzymes for consolidated bioprocessing using starch and cellulose

InactiveCN103124783AFungiBiofuelsFiberGlycerol
The present invention is directed to a yeast strain, or strains, secreting a full suite, or any subset of that, full suite, of enzymes to hydrolyze com starch, corn fiber, lignocellulose, (including enzymes that hydrolyze linkages in cellulose, hemicelhiiose, and between lignin and carbohydrates) and to utilize pentose sugars (xylose and arabinose). The invention is also directed to the set of proteins that are well expressed in yeast for each category of enzymatic activity. The resulting strain, or strains can be used to hydrolyze starch and cellulose simultaneously. The resulting strain, or strains can be also metabolically engineered to produce less glycerol and uptake acetate. The resulting strain, or strains can also be used to produce ethanol from granular starch without liquefaction.; The resulting strain, or strains, can be further used to reduce the amount of external enzyme needed to hydrolyze a biomass feedstock during an Simultaneous Saccharification and Fermentation (SSF) process, or to increase the yield of ethanol during SSF at current saccharolytic enzyme loadings. In addition, multiple enzymes of the present invention can be co-expressed in cells of the invention to provide synergistic digestive action on biomass feedstock. In some aspects, host cells expressing different heterologous saccharolytic enzymes can also be co-cultured togetherand used to produce ethanol from biomass feedstock.
Owner:LALLEMAND HUNGARY LIQUIDITY MANAGEMENT LLC +1

A clean and efficient production process for preparing xylose and l-arabinose

ActiveCN102286571AAddressing the effects of crystallizationHigh yieldSugar derivativesSugar derivatives preparationChromatographic separationYeast
The invention relates to a clean and high-efficiency production process for preparing xylose and L-arabinose and belongs to the field of application of wastes of agriculture and forestry. The production process comprises the following steps of: performing pretreatment on raw materials; hydrolyzing the raw materials in a high-temperature cooking mode; performing neutralizing treatment and performing centrifugal separation on solid slag to obtain xylose or xylooligosaccharide hydrolyzate; adding coarse enzyme solution into xylooligosaccharide solution to hydrolyze to obtain xylose solution; treating the hydrolyzate by Angle yeast; purifying by using active carbon and resin; performing recompression and concentration treatment on the purified hydrolyzate by using a mechanical vapor recompression (MVR) machine; crystallizing the concentrated solution in a gradient program cooling mode to obtain xylose products and xylose mother solution; separating the xylose mother solution by a simulated moving bed or a chromatographic separation technology to obtain a xylose phase and an L-arabinose phase; returning the xylose phase to the xylose solution to concentrate and recrystallize; reusing the xylose mother solution; performing MOVR concentration treatment on the L-arabinose phase and crystallizing in a gradient program cooling mode to obtain L-arabinose products; and reusing the L-arabinose mother solution.
Owner:BEIJING UNIV OF CHEM TECH

Escherichia coli engineering bacterium for high-yield tetrahydropyrimidine and applications of escherichia coli engineering bacterium

The invention provides a recombinant escherichia coli for high-yield tetrahydropyrimidine and a method for preparing tetrahydropyrimidine by using the recombinant escherichia coli. The recombinant escherichia coli provided by the invention is prepared by importing Halomonas elongate EctABC containing recombinant plasmids into escherichia coli. The recombinant escherichia coli disclosed by the invention realizes the soluble expression of three key enzymes synthesized by tetrahydropyrimidine under the adjustment and control of an arabinose promoter. Thalli subjected to induced expression implements the efficient secretory expression of tetrahydropyrimidine by taking sodium aspartate as a precursor through a bioconversion method. Thalli per gram can synthesize 1.1 grams of tetrahydropyrimidine, and more than 90% of tetrahydropyrimidine is secreted to extracellular receptors. The method for preparing tetrahydropyrimidine by using the recombinant escherichia coli provided by the invention facilitates the downstream purification and separation of products, and has great significance on the industrial production and large-scale application of tetrahydropyrimidine.
Owner:南京众惠生物材料科技有限公司

Method for preparing bamboo dissolving pulp by improved prehydrolysis alkaline process and product thereof

InactiveCN101514529AReasonable range of hydrolyzed reducing sugar concentrationReasonable range of purityPretreatment with acid reacting compoundsPulping with inorganic basesHydrolysatePerformance index
The invention relates to a method for preparing bamboo dissolving pulp by improved prehydrolysis alkaline process, which comprises the following steps of: bamboo material preparation, in which bamboo is made into bamboo sheets and bamboo threads, the bamboo sheets and threads are washed to remove impurities and dust; pretreatment, which is for removing more organic and nonorganic impurities, and in which the loss of pentosan is less than 2 percent; prehydrolysis, which is carried out at an acid concentration of sulphuric acid and hydrochloric acid of 0.1 to 10.0 weight percent, a temperature of between 80 and 14 DEG C and a liquor ratio of 1:4-15 for 30 to 400 minutes; and alkaline process. The method has the advantages that: the performance index of the bamboo dissolving pulp meets the requirements of viscose fibre pulp and the like; the improved prehydrolysis process allows the major part of pentosan in the bamboo to be hydrolyzed; the hydrolysate can be used as a raw material for xylose, xylitol, L-Arabinitol, ethanol and other products; the improved prehydrolysis process lays a good foundation for cooking and improving the reaction performance of the dissolving pulp; little production cost is added, the treatment load and cost of waste are reduced with the recovery of the products of the prehydrolysis, and the comprehensive cost is the lowest; and the comprehensive utilization of the components of biomass is realized during the pulping process of the dissolving pump.
Owner:上海士林纤维材料有限公司

Bio-preparation method for production of high-purity xylo-oligosaccharide and coproduction of arabinose and xylose

The invention discloses a bio-preparation method for production of high-purity xylo-oligosaccharide and coproduction of arabinose and xylose. The method comprises the following steps of: washing hemicellulose-enriched biomass, performing size mixing pretreatment, adding xylanase, performing enzymolysis, and separating and purifying to obtain mixed liquid glucose; concentrating the mixed liquid glucose until the mass concentration is 50 to 70 percent, and performing chromatographic separation to sequentially obtain AD phase, BD phase, CD phase and BD phase, and concentrating the BD phase to obtain a high-purity xylo-oligosaccharide syrup liquid product; concentrating the CD phase, mixing with cellulosic materials, drying, and crushing to prepare fiber feed; performing yeast fermentation on the AD phase to remove glucose, removing impurities, purifying, concentrating and performing chromatographic separation to obtain the high-purity xylose liquid and arabinose liquid; concentrating the xylose liquid, crystallizing, separating and drying to obtain crystallized xylose; and concentrating arabinose liquid, crystallizing, separating and drying to obtain crystallized arabinose. The invention also provides a bio-preparation method for arabinose and xylose.
Owner:SHANDONG LONGLIVE BIO TECH CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products