Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

909 results about "Simulated moving bed" patented technology

In manufacturing, the simulated moving bed (SMB) process is a highly engineered process for implementing chromatographic separation. It is used to separate one chemical compound or one class of chemical compounds from one or more other chemical compounds to provide significant quantities of the purified or enriched material at a lower cost than could be obtained using simple (batch) chromatography. It cannot provide any separation or purification that cannot be done by a simple column purification. The process is rather complicated. The single advantage which it brings to a chromatographic purification is that it allows the production of large quantities of highly purified material at a dramatically reduced cost. The cost reductions come about as a result of: the use of a smaller amount of chromatographic separation media stationary phase, a continuous and high rate of production, and decreased solvent and energy requirements. This improved economic performance is brought about by a valve-and-column arrangement that is used to lengthen the stationary phase indefinitely and allow very high solute loadings to the process.

Co-production of xylose, xylitol and arabinose from agricultural and forestry wastes

The invention relates to a clean technique for co-producing xylose, xylitol and arabinose from agricultural and forestal waste, belonging to the field of utilization of agricultural and forestal waste. The technique comprises the following steps: pretreating and preprocessing the raw material, and hydrolyzing in a thermophilic digestion mode to prepare a hemicellulose hydrolysate; after centrifugalizing to remove solid residues, carrying out TiO2-loaded activated carbon photocatalysis or ion exchange resin decolorization and detoxification treatment on the hydrolysate; carrying out MVR (mechanical vapor recompression) concentration treatment and gradient-cooling crystallization to obtain a xylose product and a xylose mother solution; fermenting L-arabinose unconverted xylitol fermentationhigh-yield strain xylitol by using the xylose mother solution as the medium to produce the xylitol; centrifugalizing to remove thalli, and carrying out decolorization and desalting treatment by membrane-process or resin adsorption; separating by using a simulated moving bed or chromatographic separation technology to obtain a xylitol phase and an L-arabinose phase; and carrying out MVR or vacuum concentration treatment on the two phases, and crystallizing in a gradient programmed cooling mode to respectively obtaining a xylitol product and an L-arabinose product, wherein the two mother solutions can be recycled.
Owner:BEIJING UNIV OF CHEM TECH

Versatile simulated moving bed systems

Distributed valve simulated moving beds are described in which junctions located between successive columns interrupt the flow of process fluid between columns, and either transmit the process fluid through a zone bypass to a succeeding column within the same zone or, if the junction is located between zones, direct the process fluid to an input/output line that is dedicated to the particular zone that immediately follows the junction. At each step of the SMB's operation, the distribution of flows in each junction is modulated to accomplish movement of ports consistent with the SMB's design. The described system can be employed to accomplish moving ports chromatography. Further described are simulated moving beds that contain one or more decoupled on-line regeneration zones. The regeneration zone is decoupled from the separation zones in the sense that it observes a step time (a “regeneration interval”) that is different than the step time observed by the separation zones of the SMB. Because the regeneration zone is “on-line,” the SMB need not be stopped to remove columns for regeneration. Because the regeneration zone is decoupled from the separation zones, the column can stay in the regeneration zone as long as needed to accomplish the regeneration, regardless of the step time observed by the SMB.
Owner:CHIN NIEN HWA LINDA +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products