Patents
Literature
Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

907 results about "Trisodium citrate" patented technology

Trisodium citrate has the chemical formula of Na₃C₆H₅O₇. It is sometimes referred to simply as "sodium citrate", though sodium citrate can refer to any of the three sodium salts of citric acid. It possesses a saline, mildly tart flavor. It is mildly basic and can be used along with citric acid to make biologically compatible buffers.

Method for preparing antibacterial composite material with nano silver particles evenly dispersed in polymeric matrix

InactiveCN101544718ABroad-spectrum bactericidalEasy to makeEscherichia coliNitrogen gas
The invention discloses a method for preparing an antibacterial composite material with nano-silver particles evenly dispersed in a polymeric matrix, which belongs to technique for preparing antibacterial nano composite materials and comprises the following steps: preparing styrene/methyl methacrylate hybrid monomers, a sodium dodecyl sulfate hybrid monomer solution, a silver nitrate aqueous solution and a trisodium citrate aqueous solution; mixing the silver nitrate aqueous solution and the trisodium citrate aqueous solution with the sodium dodecyl sulfate hybrid monomer solution according to a volume ratio to obtain a micro-emulsion containing silver nitrate and a micro-emulsion containing trisodium citrate; stirring and mixing the two micro-emulsions to obtain a stable micro-emulsion having hybrid monomers of continuous phases and containing the nano-silver particles; and then dispersing the emulsions in distilled water to prepare a common emulsion, introducing nitrogen for deoxidization, adding an initiator to perform emulsion polymerization reaction, using sodium chloride to perform emulsion-breaking and separation on the product, fully washing the product with deionized water, and soaking the product in ethanol, and drying the product to constant weight so as to obtain the antimicrobial nano-silver/poly(styrene-methyl methacrylate) composite material. The method has simple preparation processes and can make the nano-silver particles evenly dispersed in the polymer matrix, and the prepared composite material has broad-spectrum bactericidal property, and has high fatality rate to Escherichia coli, bacillus subtilis, staphylococcus aureus and pseudomonas aeruginosa in 24 hours.
Owner:HEBEI UNIVERSITY OF SCIENCE AND TECHNOLOGY

Functional graphene oxide loaded nano-silver antibacterial material as well as preparation method and application thereof

The invention belongs to the technical field of nano-silver antibacterial materials and discloses an aminated polyethylene glycol functional graphene oxide loaded nano-silver antibacterial material, a preparation method of the antibacterial material and an application of the antibacterial material in the fields of bacteriostasis and sterilization. The method comprises the following steps: adding aminated polyethylene glycol into an aqueous solution of graphene oxide, adding 1-ethyl-(3-dimethylaminopropyl) carbonyldiimine hydrochloride and N-hydroxy succinimide, regulating the pH value, stirring, and reacting, thereby obtaining the aminated polyethylene glycol modified graphene oxide; preparing the aqueous solution of the graphene oxide, adding silver nitrate, heating until the solution is boiled after dissolving, adding sodium citrate or NaBH4 aqueous solution, reacting, and cooling, thereby obtaining the aminated polyethylene glycol functional graphene oxide loaded nano-silver antibacterial material. The antibacterial material prepared by the invention has good water solubility and stability, the loading efficiency and antibacterial activity are obviously improved, and the antibacterial material has obvious antibacterial activity and can be widely applied to the fields of bacteriostasis and sterilization.
Owner:JINAN UNIVERSITY

Superparamagnetic Nanoparticles Based on Iron Oxides with Modified Surface, Method of Their Preparation and Application

The subject of the invention is superparamagnetic nanoparticle probes based on iron oxides, to advantage magnetite or maghemite, with modified surface, coated with mono-, di- or polysaccharides from the group including D-arabinose, D-glucose, D-galactose, D-mannose, lactose, maltose, dextrans and dextrins, or with amino acids or poly(amino acid)s from the group including alanine, glycine, glutamine, asparagine, histidine, arginine, L-lysine, aspartic and glutamic acid or with synthetic polymers based on (meth)acrylic acid and their derivatives selected from the group containing poly(N,N-dimethylacrylamide), poly(N,N-dimethylmethacrylamide), poly(N,N-diethylacrylamide), poly(N,N-diethylmethacrylamide), poly(N-isopropylacrylamide), poly(N-isopropylmethacrylamide), which form a colloid consisting of particles with narrow distribution with polydispersity index smaller than 1.3, the average size of which amounts to 0.5-30 nm, to advantage 1-10 nm, the iron content is 70-99.9 wt. %, to advantage 90 wt. %, the modification agent content 0.1-30 wt. %, to advantage 10 wt. %.
The particles of size smaller than 2 nm with polydispersity index smaller than 1.1 can be obtained by a modified method of preparation.
Superparamagnetic nanoparticle probes according to the invention are prepared by pre-precipitation of colloidal Fe(OH)3 by the treatment of aqueous 0.1-0.2M solution of Fe(III) salt, to advantage FeCl3, with less than an equimolar amount of NH4OH, at 21° C., under sonication, to which a solution of a Fe(II) salt, to advantage FeCl2, is added in the mole ratio Fe(III)/Fe(II)=2 under sonication and the mixture is poured into five- to tenfold, to advantage eightfold, molar excess of 0.5M NH4OH. The mixture is left aging for 0-30 min, to advantage 15 min, and then the precipitate is repeatedly, to advantage 7-10 times, magnetically separated and washed with deionized water. Then 1-3 fold amount, to advantage 1.5 fold amount, relative to the amount of magnetite, of 0.1 M aqueous solution of sodium citrate is added and then, dropwise, 1-3 fold amount, to advantage 1.5 fold amount, relative to the amount of magnetite, of 0.7 M aqueous solution of sodium hypochlorite. The precipitate is repeatedly, to advantage 7-10 times, washed with deionized water under the formation of colloidal maghemite to which, after dilution, is added dropwise, to advantage under 5-min sonication, an aqueous solution of a modification agent, in the weight ratio modification agent/iron oxide=0.1-10, to advantage 0.2 for amino acids and poly(amino acid)s and 5 for saccharides.
The particles smaller than 2 nm with polydispersity index smaller than 1.1 are prepared by mixing at 21° C. 1 volume part of 10-60 wt. %, to advantage 50 wt. %, of an aqueous solution of a saccharide, disaccharide or polysaccharide, such as D-arabinose, D-glucose, D-galactose, D-mannose, lactose, maltose, dextran and dextrins, and 1 volume part of aqueous solution of a Fe(II) and Fe(III) salt, to advantage FeCl2 and FeCl3, where the molar ratio Fe(III)/Fe(II)=2. A 5-15%, to advantage 7.5%, solution of NH4OH is added until pH 12 is attained and the mixture is heated at 60° C. for 15 min. The mixture is then sonicated at 350 W for 5 min and then washed for 24 h by dialysis in water using a membrane with molecular weight cut-off 14,000 until pH 7 is reached. The volume of solution is reduced by evaporation so that the final dry matter content is 50-100 mg/ml, to advantage 80 mg per 1 ml.
Superparamagnetic nanoparticle probes according to the invention can be used for labelling cells used in magnetic resonance imaging for monitoring their movement, localization, survival and differentiation especially in detection of pathologies with cell dysfunction and of tissue regeneration and also for labelling and monitoring cells administered for cell therapy purposes, in particular embryonal stem cells, fetal stem cells, stem cells of an adult human including bone marrow stem cells, olfactory glial cells, fat tissue cells, in the recipient organism by magnetic resonance.
The preparation of labelled cells proceeds by adding to the complete culture medium 5-20 μl, to advantage 10 μl, of a colloid containing 0.05-45 mg iron oxide per ml, to advantage 1-5 mg iron oxide per ml of the medium, and culturing the cells for a period of 1-7 days, to advantage for 1-3 days, at 37° C. and 5% of CO2.
Owner:INST OF MACROMOLECULAR CHEM ASCR V V I +1

Reticular nano hole zinc oxide micron hollow ball and preparation method thereof

The invention discloses a reticulate nanopore zinc-oxide micron hollow sphere and a preparation method thereof. The hollow sphere of the invention comprises the following materials: the surface of the zinc-oxide micron hollow sphere is provided with reticulate nanopore, wherein, the diameter of the hollow sphere is 1 to 10mum and the aperture of the nanopore is 50 to 100nm; the method of the invention comprises a liquid-phase chemical method, particularly (a) according to the mole ratio that zinc salt: chelating agent: sodium citrate: water is equal to 1:(0.5-1.5):(0.05-0.15):(50-150), the materials are weighted, then put into a vessel, stirred, dissolved and kept warm for three hours at the temperature of 70 to 100 DEG C under the sealing state to obtain a product; (b) the obtained product is filtrated, washed more than one time and heated for 1 to 3 hours at the temperature of 300 to 500 temperature, and the reticulate nanopore zinc-oxide micron hollow sphere is obtained; the zinc salt is zinc nitrate or zinc acetate or zinc chloride or zinc sulfate, and the chelating agent is urea or ammonia or hexamethylene tetramine or ammonium hydroxide. The hollow sphere can be widely applied to the fields of drug transportation, chemical reaction carrier, cosmetics, coating material, catalytic and photocatalysis material, etc.
Owner:HEFEI INSTITUTES OF PHYSICAL SCIENCE - CHINESE ACAD OF SCI

Sea urchin-shaped hollow gold and silver alloy nano particle and preparation method and application thereof

The invention discloses a sea urchin-shaped hollow gold and silver alloy nano particle and a preparation method and application thereof. The method comprises the following steps: dissolving silver nitrate into water; heating the mixture of the silver nitrate and the water till boiling; adding trisodium citrate aqueous solution in the mixture and keeping boiling for 3-30 minutes to obtain a silver colloid; mixing chloroauric acid aqueous solution and the water; adding the silver colloid under the condition of agitation at the temperature of 15 DEG C; adding hemoporphyrin metalporphyrin aqueous solution and obtaining a reaction solution after 5 min reaction; performing centrifugalization of the reaction solution, washing deposit obtained via centrifugalization, and obtaining the sea urchin-shaped hollow gold and silver alloy nano particle. The diameter of the nano particle is 80 nm-300 nm, the hollow size is 20 nm-50 nm, the length of a stab is 10 nm-30 nm, the diameter of the stab is 10 nm. The preparation method is simple, low in cost, gentle in condition, short in time, easy in process control, and large in production capacity. The obtained nano particle can be well applied to organic molecule detection, earlier detection of tumour and photothermal treatment.
Owner:XI AN JIAOTONG UNIV

Sulfur/nitrogen double-doped carbon quantum dot with high fluorescence quantum yield and preparation method and application of sulfur/nitrogen double-doped carbon quantum dot

The invention provides a sulfur/nitrogen double-doped carbon quantum dot with high fluorescence quantum yield and a preparation method and ion detection application of the sulfur/nitrogen double-doped carbon quantum dot. The carbon source of the carbon quantum dot is provided from sodium citrate, and the sulfur source and the nitrogen source of the carbon quantum dot are both provided from sulfamide. The reparation method comprises the following steps: dissolving the raw materials in a hydrothermal reaction kettle for reaction, after the synthesized product is naturally cooled, separating so as to obtain a solution, and drying the solution, thereby obtaining the sulfur/nitrogen double-doped carbon quantum dot with high fluorescence quantum yield. By adopting the method, only one step of reaction is needed, a small amount of middle products and byproducts can be generated, a very small amount of raw materials is needed, the reaction speed is fast, and the method is both economic and environment-friendly. In addition, the sulfur/nitrogen double-doped carbon quantum dot has the characteristics of high fluorescence quantum yield, can be successfully applied to detection on Hg<2+>, and has wide application prospect in biological detection, sewage treatment and the like.
Owner:CHINA UNIV OF PETROLEUM (BEIJING)

Preparation method of thorn-shaped or petal-shaped rough-surface gold-silver alloy nanometer material

The invention provides a preparation method of a thorn-shaped or petal-shaped rough-surface gold-silver alloy nanometer material. The preparation method comprises the steps that gold nanoparticle seeds are prepared from a mixed solution of chloroauric acid and trisodium citrate; the gold nanoparticle seeds grow on the surfaces of gold nanoparticles through heterogeneous nucleation; and under the action of molecular synergistic adsorption of L-dopamine, stabilization of atomic clusters, reduction of gold ions and silver ions and underpotential deposition of silver atoms, the thorn-shaped or petal-shaped rough-surface gold-silver alloy nanometer material is prepared and formed. The preparation method is simple in process and effective; production cost can be lowered conveniently; the preparation method is suitable for large-scale production; and the prepared thorn-shaped or petal-shaped rough-surface gold-silver alloy nanometer material is of a unique bionic structure, large in specific surface area and capable of loading a great amount of active medicine and molecular dye. Therefore, the preparation method has wide application prospect in the fields such as SERS sensing, catalysis, diagnosis and treatment and adsorbing materials.
Owner:XI AN JIAOTONG UNIV

Zinc oxide hollow microspheres and preparation method thereof

InactiveCN101948130AEasy to preparePreparation method low temperatureZinc oxides/hydroxidesMicrosphereHigh pressure
The invention discloses zinc oxide hollow microspheres and a preparation method thereof. The invention relates to an inorganic nano material, and provides the zinc oxide hollow microspheres and the preparation method thereof. The zinc oxide hollow microspheres are made of wurtzite structural zinc oxide with powder diffraction standard joint committee number 36-1451, the diameters of the microspheres are 5 to 8 microns, and the thicknesses of the sphere walls are 0.5 to 1 micron. The preparation method comprises the following steps of: dissolving zinc nitrate hexahydrate and hexamethylene tetramine into water to obtain solution A, and adding sodium citrate into the solution A to obtain solution B; putting the solution B into a closed high pressure reactor, and putting the high pressure reactor into a drying oven to perform hydrothermal reaction; and after the hydrothermal reaction, cooling the reaction product to room temperature, opening the high pressure reactor, and filtering, washing and drying the sediment to obtain the zinc oxide hollow microspheres. The preparation method has the advantages of simplicity, convenience, low temperature, high yield and low sample dislocation density; and the zinc oxide hollow microspheres have broad application value in the fields of medicament release, photocatalysis, dye-sensitized solar cells and the like.
Owner:XIAMEN UNIV

Method for preparing collagen protein

InactiveCN101363040AComplete triple helixComplete bioactive structurePeptide preparation methodsFermentationCollagen VIAponeurosis
A method for preparing collagen comprises the steps: 1) preliminary treatment of materials: body fat and aponeurosis of fresh beef tendon are removed, and then the beef tendon is soaked in 0.1 plus or minus 0.05% of sodium carbonate solution for 4 plus or minus 2h and is rinsed by distilled water for a plurality of times for airing; 2) pretreated beef tendon is added with proteolytic enzyme according to the mass mixture ratio of 0.3 plus or minus 0.1wt% and is added with acetic acid solution to be slowly stirred for 3-5d at the temperature of 1-12 DEG C; and then, the mixture is centrifugated by a high speed freezing centrifuge, and supernatant fluid is taken out and extracted crudely to obtain collagen solution; 3) the purification of the collagen: the crude extracted collagen solution is added with H2O2 solution with the mass percentage of 1 plus or minus 0.5% to be evenly mixed in a rest state for 4 plus or minus 2h, and the pH value is adjusted by 5 plus or minus 1 by trisodium citrate solution; after centrifugation, certain quantity of sodium chloride is added into the residual solution for salting out, and then the precipitate is filled into a bag filter to be dialyzed by acetic acid solution for 1 plus or minus 0.5d and by distilled water for 3 plus or minus 1d; dialysate is changed for 2-3 times every day, and collagen liquid is obtained.
Owner:无锡贝迪生物工程股份有限公司

Iron diselenide/sulfur-doped graphene anode composite material for sodium-ion battery and preparation method of iron diselenide/sulfur-doped graphene anode composite material

The invention discloses an iron diselenide/sulfur-doped graphene anode composite material for a sodium-ion battery and a preparation method of the iron diselenide/sulfur-doped graphene anode composite material. The preparation method comprises the following steps: dissolving a sulfur source, a selenium-containing inorganic matter, an iron-containing inorganic salt and citric acid or sodium citrate into a graphene oxide solution; dropwise adding hydrazine hydrate to form a light black solution, adding the light black solution to a hydrothermal reaction kettle for reaction, and naturally cooling the product after the reaction is ended; and carrying out repeated washing, suction filtration and drying on a reaction sediment with distilled water and absolute ethyl alcohol, so as to obtain the iron diselenide/sulfur-doped graphene composite material. According to the iron diselenide/sulfur-doped graphene composite material prepared by the method, iron diselenide nano-particles are evenly distributed on the surface of the sulfur-doped graphene and the iron diselenide/sulfur-doped graphene composite material has excellent electrochemical properties as a sodium-ion battery anode material. The iron diselenide/sulfur-doped graphene anode composite material is prepared by a simple hydrothermal process; synchronous sulfur doping, graphene oxide reduction and graphene oxide and iron diselenide recombination can be achieved; and the iron diselenide/sulfur-doped graphene anode composite material is simple in preparation technology and low in cost, and has a wide industrial application prospect.
Owner:CENT SOUTH UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products