Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

145 results about "Sonic boom" patented technology

A sonic boom is the sound associated with the shock waves created whenever an object travelling through the air travels faster than the speed of sound. Sonic booms generate enormous amounts of sound energy, sounding similar to an explosion or a thunderclap to the human ear. The crack of a supersonic bullet passing overhead or the crack of a bullwhip are examples of a sonic boom in miniature.

System and method for controlling the acoustic signature of a device

A system receives information regarding current flight conditions of a device such as an aircraft and determines the acoustic level of the sonic boom and / or other noise generated by the device during operation. The current acoustic level is compared to a desired level, and various cues are displayed to operators regarding corrective actions that can be taken to reduce or maintain the acoustic level at the desired level. The system also predicts future acoustic levels based on current operating conditions, and varies the urgency of the cues based on whether and how quickly the device will exceed the desired acoustic level. Options to limit maneuvers and to automatically adjust operating condition parameters can be enabled. Options to display additional information regarding past, current, and predicted acoustic levels can also be selected. Signals that can be used to automatically control the acoustic level of a device during operation can also be generated for use in devices that can operate autonomously.
Owner:SUPERSONIC AEROSPACE INT

Low sonic boom inlet for supersonic aircraft

All-internal compression inlets for supersonic aircraft, with variable geometry systems and shock stability bleed systems provide high performance, large operability margins, i.e. terminal shock stability that reduces the probability of inlet unstart, and contribute little or nothing to the overall sonic boom signature of the aircraft. These inlets have very high internal area contraction or compression and very low external surface angles. All shocks from the internal inlet surfaces are captured and reflected inside the inlet duct, and all of the external nacelle surfaces are substantially aligned with the external airflow. The inlet shock stability system consists of bleed regions that duct bleed airflows to variable area exits with passive or active exit area controls. This reduces the risk of inlet unstarts by removing airflow through a large open throat bleed region to compensate for reductions in diffuser (engine) corrected airflow demand. Because the stability bleed is not removed until the inlet terminal shock moves upstream over the bleed region, the necessary normal shock operability margin is provided without compromising inlet performance (total pressure recovery, and distortion).
Owner:TECHLAND RES

Variable forward swept wing supersonic aircraft having both low-boom characteristics and low-drag characteristics

It is an object of the present invention to provide the entire airplane shape of a supersonic aircraft that can realize low sonic boom characteristics, and that can also minimize wave-drag. In order to achieve both sonic boom suppression and a reduction in wave-drag, the entire airplane shape of the supersonic aircraft of the present invention uses a variable forward swept wing configuration having a mechanism that can vary a forward sweep angle as the main wing configuration, rather than forming the fuselage shape with a blunt nose.
Owner:JAPAN AEROSPACE EXPLORATION AGENCY

Low shock strength inlet

Embodiments of the invention relate to a supersonic inlet having a cowl lip configured to capture the conic shock and exhibit a zero or substantially zero cowl angle. The inlet may be configured to employ a relaxed isentropic compression surface and an internal bypass. The nacelle bypass may prevent flow distortions, introduced by the capture of the conic shock, from reaching the turbomachinery, thereby allowing the cowl angle to be reduced to zero or substantially zero. Such a cowl angle may reduce the inlet's contribution to the overall sonic boom signature for a supersonic aircraft while allowing for an increase in engine pressure recovery and a subsequent improvement in generated thrust by the engine.
Owner:GULFSTREAM AEROSPACE CORP

System, apparatus, and method for redistributing forces to meet performance goals and shock wave disturbance constraints

A system and method for configuring an aircraft for low sonic boom supersonic flight conditions includes redistributing lift of a wing by configuring the wing with one or more areas of far-field expansion ahead of areas of far-field compression. An equivalent area distribution goal curve is scaled to account for the equivalent area reduction due to excursions below to goal curve. A relaxed constraint allows the equivalent area distribution of the aircraft to be at or below the equivalent area distribution goal curve to enable multiple parameters to be configured to meet the equivalent area distribution constraint, as well as other constraints. The system and method can be adapted to aid in the design of any type of vehicle whose surfaces are subject to supersonic fluid flow, especially to reduce sonic boom.
Owner:SUPERSONIC AEROSPACE INT

Aircraft engine arrangement

InactiveUS7484354B2Minimise aerodynamic dragMinimize cross-sectional areaGas turbine plantsJet propulsion plantsBlock effectTurbine
In order to avoid external bulging (5) to accommodate accessory mechanisms (27) and gearboxes (30) to drive these mechanisms (27) in accordance with the present invention splitter fairings (26) are located within a bypass duct (23) of an engine (20). The bypass duct (23) is defined between a casing (21) and compressor / turbine propulsion core (22). The fairings (26) are of sufficient dimensions to accommodate the accessory mechanisms (27) whilst the bypass duct (23) is appropriately shaped axi-symmetrically to eliminate and balance any blocking effect of these fairings (26) within the duct (23) upon air flow (24). Further fairings (26′) may be provided to accommodate oil tank reservoirs (34) as well as filter / heat exchanger mechanisms (35) for the engine (20). In such circumstances, a notional elongate cylindrical profile for the engine (20) is maintained such that a reduced cross section is require for that engine (20) and so allowing a smaller airframe with better sonic boom signature.
Owner:ROLLS ROYCE PLC

Aircraft thickness/camber control device for low sonic boom

An aircraft thickness / camber control device mounts to the lower surface of a airfoil configuration, for example on a fuselage, and extends along a longitudinal axis. The device, when deployed, generates expansions ahead of compressions generated by off-design conditions, inlet spillage for example, and enables maintenance of a low boom signature. The device, when positioned at appropriate locations, may also be used as a drag reduction device. The thickness / camber control device comprises a structural member capable of coupling to the airfoil at a position forward of the concentrated source of added compression and a control element. The control element is coupled to the structural member and controls the structural member to adjust thickness / camber of the configuration to cancel the far-field effect of the extra compression or concentrated pressure source.
Owner:SUPERSONIC AEROSPACE INT

Gun flash hider

A gun flash hider, formed to include a first expansion chamber, a first flow divider, a plurality of first exhaust passages, an exhaust head, a second expansion chamber, a plurality of second exhaust passages and a second flow divider, whereby high-temperature high-pressure gas produced after firing a bullet undergoes two expansion decompressions and two flow diversion decompressions, through which the gas is sequentially discharged from the first exhaust passages and the second exhaust passages, thereby substantially reducing sonic boom volume, amount of flame and recoil force produced when firing the bullet, and increasing stability and shooting accuracy when using a gun.
Owner:TROIKA INT

Hypersonic aircraft

A supersonic aircraft having unique structural, geometrical, electromagnetic, mechanical, thermal and aerodynamic configuration is described. Its design characteristics maximize aerodynamic performance, speed, efficiency, comfort and range in the operational affect of carrying passengers over long distances at very high flight speeds and Mach numbers, generally above Mach 4.0+. It has fully integrated-mated fuselage twin engine nacelle structures which reduce and stabilize wave drag, wherein engines sit forward of the sonic boom electrode swept aerospace but are integrated right through the sub-wing, the aero-spike and inlet just above the top surface of the central wing, and above and the major wing mating join, attached via a massive composite titanium keel structure, through the central wing box and fuselage.
Owner:HYPERMACH AEROSPACE INDS

Real-time, interactive sonic boom display

The present invention is an improved real-time, interactive sonic boom display for aircraft. By using physical properties obtained via various sensors and databases, the invention determines, in real-time, sonic boom impacts locations and intensities for aircraft traveling at supersonic speeds. The information is provided to a pilot via a display that lists a selectable set of maneuvers available to the pilot to mitigate sonic boom issues. Upon selection of a maneuver, the information as to the result of the maneuver is displayed and the pilot may proceed with making the maneuver, or provide new data to the system in order to calculate a different maneuver.
Owner:U S GOVERNMENT AS REPRESENTED BY THE ADMINISTATOR OF THE NAT ACRONAUTICS & SPACE ADMINISTATION

Wing employing leading edge flaps and winglets to achieve improved aerodynamic performance

ActiveUS20070262207A1Increase aft liftImprove aerodynamic flow fieldInfluencers by generating vorticesWith power amplificationLeading edgeControl system
A wing for use on a supersonic aircraft that includes an inboard section a central section of the wing outboard of the inboard portion, and an outboard section. The outboard section can be a winglet oriented anhedrally relative to a lateral axis of the supersonic aircraft. Leading edge segments on the inboard section, central section and outboard winglet may have mounted thereon leading-edge flaps. These flaps are adjusted by a control system operable to reposition the leading-edge flaps in order to improve the aerodynamic performance of the supersonic aircraft. This winglet promotes sonic boom minimization. Further, the wing tip anhedral allows greater inboard dihedral. This effectively pushes lift aft for sonic boom and control purposes while minimizing the movement of control surfaces.
Owner:SUPERSONIC AEROSPACE INT

Microjet creation and control of shock waves

A method of using one or more microjets to create and / or control oblique shock waves. The introduction of microjet flow into a supersonic stream creates an oblique shock wave. This wave can be strengthened—by increasing microjet flow rate or the use of many microjets in an array—in order to form an oblique shock. Such an oblique shock can be used to decelerate flow in a jet aircraft engine inlet in a controlled fashion, thus increasing pressure recovery and engine efficiency while reducing flow instability. Adjusting the pressure ratio across the microjet actually alters the angle of the oblique shock. Thus, the use of microjets allows decelerating shock waves in an inlet engine to be properly positioned and controlled. Microjet arrays can also be used to ameliorate shock waves created by external aircraft surfaces, such as sensor pods and weapons. Microjets placed forward of any external protuberance can convert a single substantial shock wave into a series of much milder waves which will not produce unwanted external effects, such as strong sonic booms.
Owner:FLORIDA STATE UNIV RES FOUND INC

Leading edge channel for enhancement of lift/drag ratio and reduction of sonic boom

The leading edges of wings, nose assemblies, tails, fins, struts, and other components of aircraft, atmospheric entry vehicles and missiles in which the leading edge is blunted and the flight Mach number is supersonic, are provided with passive airflow channel, resulting in significantly reduced wave drag and total drag, significantly increased lift-to-drag ratio, and reduced sonic boom.
Owner:GEORGIA TECH RES CORP

Aircraft configuration

An aircraft configuration that may reduce the level of noise, infrared radiation, sonic boom, or combination thereof directed towards the ground from an aircraft in flight. In accordance with an embodiment of the present invention, an aircraft includes a tubular fuselage, two delta wings, at least one engine mounted to the aircraft and higher than the wings, and vertical stabilizers mounted on each wing outboard of the outermost engine. Each wing may include a wing strake at the leading edge of the wing and extending to the fuselage and an aft deck. The leading edge of the wing may extend forward of the intake of the engine, and the trailing edge of the aft deck may extend aft of the engine exhaust. The aft deck may include an upwardly rotatable pitch control surface at the trailing edge of the deck.
Owner:THE BOEING CO

Inspection apparatus for tubular members

An ultrasonic inspection system useful for inspecting a tubular member provides for the use of ultrasonic transducer assembly for detecting weld flaws or other out-of range conditions in the tubular member. According to the invention, the tubular member is positioned horizontally on a rolling carriage and a predetermined amount of sound-conductive fluid is deposited into the tubular member. Wide rings secured to opposing open ends of the tubular member prevent the liquid from escaping, while forming a barrier for retaining a given level of liquid inside the tubular member. The transducers are submerged in the liquid and transmit / receive sonic booms from reflected medium inside the tubular member. The transducers are connected to a computing control unit, which receives signals generated by the transducers and creates a report of any out-of range condition.
Owner:CAIN JR JAMES M

Directed energy off-body heating for supersonic vehicle shockwave and sonic boom control

Methods and apparatus for suppressing noise. The present invention provides a method that includes directing a laser at a first volume of gas and directing microwave radiation to a second volume. The method includes selecting the location of the second volume so that it is overrun by a shockwave system of a supersonic vehicle. Preferably, the directing of the radiation is from a vehicle that flies at high altitude and is of practical length (e.g., 100-400 feet or more). The radiation may be pulsed and steered. The present invention also provides a system including a laser and microwave antenna for controlling the noise of a supersonic vehicle. The laser is directed at a first volume while the antenna is pointed at a second volume that envelops the first volume. The location of the second volume is such that it will be overrun by the shockwave system of the vehicle.
Owner:THE BOEING CO

Wing gull integration nacelle clearance, compact landing gear stowage, and sonic boom reduction

A supersonic cruise configuration aircraft comprises a fuselage extending on a longitudinal axis from a forward nose to an aft tail, and a wing coupled at an inboard section to the fuselage and extending to an outboard tip, and having a leading edge and a trailing edge. The aircraft further comprises a landing gear that is coupled to the wing and capable of stowing into the wing and fuselage on retraction. The landing gear has a landing gear strut. The wing is gulled with a dihedral at an angle that is increased inboard and aligns with the retracted landing gear. The wing has a minimum thickness sufficient to enclose the landing gear.
Owner:SUPERSONIC AEROSPACE INT

Canard position and dihedral for boom reduction and pitch/directional control

A supersonic aircraft comprises the fuselage extending forward and aft along a longitudinal axis, a wing coupled to the fuselage, and a canard. The canard is coupled onto the fuselage forward of the wing at an elevated position that enables stretching of the aircraft lifting length and forms an effective area distribution to attain a shaped sonic boom signature.
Owner:SUPERSONIC AEROSPACE INT
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products