Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

803results about "Wing shapes" patented technology

Tethered system for power generation

A system for power generation comprises a wing, a turbine, a tether, and a tether tension sensor. The wing is for generating lift. The turbine is coupled to the wing and is used for generating power from rotation of a propeller or for generating thrust using the propeller. One end of the tether is coupled to the wing. The tether tension sensor is for determining a tension of the tether.
Owner:MAKANI TECH LLC +1

Aircraft with Integrated Lift and Propulsion System

A vertical take off and landing (VTOL) aircraft is designed to be so efficient that it can be commercially competitive with runway dependent aircraft operating in a range of 100 to 1000 miles. Improvements include a high efficiency tilting rotor and wing design that enable both vertical takeoff and efficient high speed cruising, a high aspect ratio wing, and a variable speed propulsion system that is efficient in both hover and cruise flight. Preferred aircraft use thin inboard and outboard wings, thin rotor blades, and use efficient lightweight design to achieve unusually low empty weight fraction. Inventive methods include utilization of advanced design and analysis techniques, which allow for accurate prediction of an aircraft's physical behavior.
Owner:KAREM ABE

Blended Wing Body Unmanned Aerial Vehicle

InactiveUS20100123047A1Improve stabilityImproved safety characteristicUnmanned aerial vehiclesWing shapesComparable sizePropeller
A Blended Wing Body SUAV and MUAV is disclosed having a novel airfoil profile, wing configuration, rigging and tractor pull propeller placement that provide improved stability and safety characteristics over prior art SUAVs and MUAVs of comparable size and weight. This unique blended wing design includes wing twist on the outboard wing and an inverted “W” shaped planform to provide lateral and longitudinal stability, and smooth, even flight characteristics throughout the range of the expected flight envelope. These flight characteristics are crucial to providing a stable reconnaissance platform with favorable stall speeds, an increased payload and the ability to hand launch without the danger of exposing ones hands or wrist to a propeller.
Owner:WILLIAMS AEROSPACE

Modular Flight Vehicle With Wings

The invention is a modular vehicle having an air vehicle that can be coupled to cargo containers, land vehicles, sea vehicles, medical transport modules, etc. In one embodiment the air vehicle has a plurality of propellers positioned around a main airframe, which can provide vertical thrust and / or horizontal thrust. The propellers are mounted on supports which have an airfoil shape to generate additional lift. One or more of the propellers may be configured to tilt forward, backward, and / or side-to-side with respect to the airframe.
Owner:SHAW DONALD ORVAL

CMC airfoil with thin trailing edge

An airfoil (10) as may be used in a gas turbine engine includes a ceramic matrix composite (CMC) element (12) that extends to define a leading edge portion (14) and chord portion (16) of the airfoil, and a separately formed but conjoined trailing edge element (18) that defines a desirably thin trailing edge of the airfoil without the need for using an excessively small bend radius for reinforcing fibers in the CMC element. The trailing edge element may include a plurality of interlock elements (26) that extend through the trailing edge attachment wall (22) of the CMC element and provide mechanical attachment there between. Alternatively, the trailing edge element may be adhesively bonded or sinter bonded to the CMC element. A cooling air insert (60) may be disposed within a cooling air cavity (64) of the CMC element and may include cooling tubes (66) that extend into the trailing edge element to deliver cooling air there through.
Owner:SIEMENS ENERGY INC

Tailed flying wing aircraft

The “Tailed Flying Wing Aircraft” idea represents new aerodynamic concepts for large high subsonic aircraft. Large high subsonic aircraft based on these new aerodynamic concepts are having a significantly higher lift capacity and longer range, as well as a significantly lower fuel consumption of at least two times less than the aircraft based on classical fuselage concept with the same external dimensions. In addition, the aircraft based on the new concepts are having a significantly better longitudinal stability and maneuverability, as well as aerodynamic efficiency at high subsonic speed than aircraft based on “Tailless Flying Wing” concepts. The aircraft based on the “Tailed Flying Wing Aircraft” idea satisfy all safety requirements for civil aircraft. They also have simple shapes for manufacturing, hence this idea provides for new realistic advanced aerodynamic concepts for the next generations of large subsonic aircraft.
Owner:DIZDAREVIC FARUK +1

Airfoil for a helicoptor rotor blade

An airfoil family for a helicopter rotor blade, designated SC362XX. SC362XX essentially removes the large lower surface suction peak associated with ‘drag creep’ at moderate lift coefficients while reducing the peak Mach number and shock strength at high lift / Mach number conditions. Another optional airfoil family for use at inboard regions of the helicopter rotor, which is designated SC3252XX airfoil family, is a relatively thicker airfoil section that includes a significant increase in thickness forward of the 30% x / c location to provide a relatively thick and rigid inboard section. The lift coefficient at which the drag divergence Mach number was optimized is the same in both families thereby readily providing application to a single rotor blade.
Owner:SIKORSKY AIRCRAFT CORP

System for setting the span load distribution of a wing

A system for setting a span load distribution of a wing of an aircraft with a base flap system comprises at least one inboard flap element and one outboard flap element, which elements in the direction of the span are arranged on the trailing edge of the wing, and can be positioned relative to the span direction of the wing. The flap elements are not mechanically coupled with each other and are controlled independently of each other for the purpose of setting the span load distribution.
Owner:AIRBUS OPERATIONS GMBH

Variable forward swept wing supersonic aircraft having both low-boom characteristics and low-drag characteristics

It is an object of the present invention to provide the entire airplane shape of a supersonic aircraft that can realize low sonic boom characteristics, and that can also minimize wave-drag. In order to achieve both sonic boom suppression and a reduction in wave-drag, the entire airplane shape of the supersonic aircraft of the present invention uses a variable forward swept wing configuration having a mechanism that can vary a forward sweep angle as the main wing configuration, rather than forming the fuselage shape with a blunt nose.
Owner:JAPAN AEROSPACE EXPLORATION AGENCY

Aircraft With Integrated Lift And Propulsion System

A vertical take-off and landing (VTOL) aircraft is designed to be so efficient that it can be commercially competitive with runway dependent aircraft operating in a range of 100 to 1000 miles or more, with glide ratios of at least 24. Improvements include a combination of high efficiency tilting rotor and wing design that enable both vertical takeoff and efficient high speed cruising, a high aspect ratio wing, and a variable speed propulsion system efficient in both hover and cruise flight. Preferred aircraft use narrow chord inboard and outboard wings, and use efficient lightweight design to achieve unusually low empty weight fraction. In some embodiments, the rotors use medium rather than high modulus fibers, with wider blades of lower taper ratio, to provide the stiffness and mass properties required for high performance OSTR rotor blades. Also disclosed are VTOL aircraft with glide ratios from approximately 26 to over 40.
Owner:KAREM ABE

Surface flow diverting and static charging ducted pores on wing or blade tip to reduce wake and BVI noise

InactiveUS20070252047A1Promoting interlayer movementInfluencers by generating vorticesWing shapesElectricityLeading edge
Air pressure distribution for airfoil lower and upper surfaces is utilized to divert airflow using ducts formed in space-curve shapes placed inside the airfoil volume, through span-wise located inlets from high pressure areas on the airfoil lower surface near the leading edge and through chord-wise spaced inlets on the side face of the airfoil wing tip correspondingly to the side face of the airfoil wing tip through chord-wise spaced outlets on the side face of the airfoil wing tip and to span-wise located outlets to the low pressure areas on the airfoil upper surface. Triboelectric materials on the wing surfaces are employed to static charge the air in drag. Inside the ducts, the employment of either triboelectric linings and materials, or HV-supplied electrodes, or both, help to static charge the diverted air flow to and from the airfoil wing tip side face to diffuse wing tip vortex core early.
Owner:PAL ANADISH KUMAR

Aircraft wing and flap deployment system

ActiveUS20090134281A1Increase aerodynamicIncrease structural efficiencyAircraft controlWing shapesAirplaneTrailing edge
An aircraft wing comprising: a main wing element; and a flap connected to the main wing element by a deployment system which can deploy the flap from a retracted position to an extended position, wherein the wing has a trailing edge which is swept, at least in the region of the flap, when the flap is in its retracted position, and wherein the deployment system is arranged such that the flap reduces the degree of sweep of the trailing edge of the wing in the region of the flap as it is deployed. The deployment system comprises a first actuator configured to rotate the flap horizontally so as to change the sweep angle of the flap and a second actuator configured to rotate the flap vertically so as to increase the camber of the wing, and the first and second actuators are operable independently of each other.
Owner:AIRBUS OPERATIONS LTD

Non-planar adaptive wing solar aircraft

A system and method for assembling and operating a solar powered aircraft, composed of one or more modular constituent wing panels. Each wing panel includes at least one hinge interface that is configured to rotationally interface with a complementary hinge interface on another wing panel. When a first and second wing panel are coupled together via the rotational interface, they can rotate with respect to each other within a predetermined angular range. The aircraft further comprises a control system that is configured to acquire aircraft operating information and atmospheric information and use the same alter the angle between the wing panels, even if there are multiple wing panels. One or more of the wing panels can include photovoltaic cells and / or solar thermal cells to convert solar radiation energy or solar heat energy into electricity, that can be used to power electric motors. Further, the control system is configured to alter an angle between a wing panel and the horizon, or the angle between wing panels, to maximize solar radiation energy and solar thermal energy collection. A tail assembly for the aircraft includes a rotational pivot that allows the flight control surfaces to rotate to different orientations to avoid or reduce flutter loads and to increase solar radiation energy and / or solar thermal energy collection from photovoltaic cells and / or solar thermal cells the can be located on the tail structure associated with the flight control surfaces.
Owner:AURORA FLIGHT SCI CORP

Lift augmenter with united jet flow structure on wing flap

The invention discloses a height-lift device provided with combined jet structure on a wing flap, comprising a wing leading edge slat, a main wing and the wing flap; wherein, the upper surface of the wing flap is provided with the combined jet structure which is provided with an air compressor used for controlling the flow and the speed of ejective airflow so as to adjust the influence of the airflow on the taking-off or landing performances of a plane. The high-lift device can obviously improve the flow quality above the wing flap of the plane, avoid the separation of the wing flap, improve the taking off, landing and stall performance of the plane, improve the maximum lift and furthermore, and achieve the taking off and landing of the plane at comparatively low speed.
Owner:BEIHANG UNIV

Wing tip device

A wing tip device for fixing to the outboard end of a wing, the wing defining a wing plane, includes: an upper wing-like element projecting upwardly with respect to the wing plane and having a trailing edge; and a lower wing-like element fixed with respect to the upper wing-like element and having a root chord and a trailing edge, the lower wing-like element root chord intersecting with the upper wing-like element, and the lower wing-like element projecting downwardly from the intersection. The upper wing-like element is larger than the lower wing-like element and the trailing edge of the lower wing-like element is adjacent the trailing edge of the upper wing-like element at the intersection. An included angle between the upper and lower wing-like elements at the intersection is less than, or equal to, 160 degrees.
Owner:AIRBUS OPERATIONS LTD +1

Deployable, rigidizable wing

A novel design and construction method for an inflatable, rigidizable wing for a terrestrial or planetary flying vehicle. The wing is caused to deploy from an initially packed condition and to assume its functional shape by means of an inflation gas. After inflation, the wing is rigidized by any of several means, such that the inflation gas is no longer required. The composite wing is fabricated from a base reinforcement material, often a fabric, which is coated with a polymer resin that hardens when exposed to a curing mechanism. Several activation mechanisms exist by which to initiate rigidization of such a structure, including elevated temperature, ultraviolet light, and chemical constituents of the inflation gas. The resultant wing has fundamental advantages compared to existing inflatable wings, including improved stiffness, and reduced susceptibility to structural failure in response to puncture.
Owner:ILC DOVER LP

Ground effect airplane

An extremely large aircraft which is suitable for overseas cargo transport and which includes a fuselage defining a central storage cavity, a wing assembly defining a pair of wing storage cavities, an altitude control system, and a plurality of independently steerable landing gear units. The central storage cavity has a length, height and width of at least 100 feet, at least 16 feet and at least 24 feet, respectively. The wing assembly has a wingspan of at least 300 feet and is configured with a moderate aspect ratio to permit both ground-effect and high altitude operation. The altitude control system controls the aircraft in ground effect such that the aircraft is maintained at about a predetermined altitude. The landing gear units are coupled to the fuselage and are arranged in at least two discrete columns and at least ten discrete rows. The central storage cavity and the wing storage cavities are configured to receive cargo including intermodal re-usable cargo containers.
Owner:THE BOEING CO

Airplane with variable-incidence wing

The craft is for hovering flight, vertical takeoff and landing, and horizontal forward flight. It has a tail-sitting fuselage and a ducted fan mounted to the fuselage aft to provide propulsion in both (a) hovering and vertical flight and (b) horizontal forward flight. At each side is a floating wing, supported from the fuselage for passive rotation (or an actuator-controlled optimized emulation of such rotation) about a spanwise axis, to give lift in forward flight. The fuselage attitude varies between vertical in hovering and vertical flight, and generally horizontal in forward flight. Preferably the fuselage is not articulated; there is just one fan, the sole source of propulsion, rotating about only an axis parallel to the fuselage; and thrust-vectoring control vanes operate aft of the fan. Preferably at each side a small, nonrotating wing segment is fixed to the fuselage, and the floating wing defines-along its trailing portions-a corner notch or slot near the fuselage; forward portions of the fixed wing segment are within this notch. Preferably the spanwise axis is along a surface of the floating wing, and a long hinge supports that wing from the fixed wing segment, within the notch. During vertical and transitional flight characteristically the leading edge of the floating wing is down relative to the fuselage axis.
Owner:JOAO VERDI CARVALHO LEITE

Variable camber continuous aerodynamic control surfaces and methods for active wing shaping control

ActiveUS9227721B1Improve various performance metricNo additional benefitAircraft controlWing shapesLeading edgeControl signal
An aerodynamic control apparatus for an air vehicle improves various aerodynamic performance metrics by employing multiple spanwise flap segments that jointly form a continuous or a piecewise continuous trailing edge to minimize drag induced by lift or vortices. At least one of the multiple spanwise flap segments includes a variable camber flap subsystem having multiple chordwise flap segments that may be independently actuated. Some embodiments also employ a continuous leading edge slat system that includes multiple spanwise slat segments, each of which has one or more chordwise slat segment. A method and an apparatus for implementing active control of a wing shape are also described and include the determination of desired lift distribution to determine the improved aerodynamic deflection of the wings. Flap deflections are determined and control signals are generated to actively control the wing shape to approximate the desired deflection.
Owner:NASA

Metal injection molding process for bimetallic applications and airfoil

A method of producing an airfoil including the steps of providing a first preform having a metallic powder of a first alloy, the first preform defining an airfoil body having curved pressure and suction sides. A tip cap is disposed between the pressure and suction sides of the airfoil at a radially outer end of the airfoil body. A partial height squealer tip extends radially outwards from the tip cap to provide a second preform that is a metallic powder of a second alloy different from the first alloy. The tip cap is formed in the shape of an extension of the squealer tip. The first and second preforms are sintered to consolidate the metal powders. An airfoil according to the method is also disclosed.
Owner:GENERAL ELECTRIC CO

Aircraft thickness/camber control device for low sonic boom

An aircraft thickness / camber control device mounts to the lower surface of a airfoil configuration, for example on a fuselage, and extends along a longitudinal axis. The device, when deployed, generates expansions ahead of compressions generated by off-design conditions, inlet spillage for example, and enables maintenance of a low boom signature. The device, when positioned at appropriate locations, may also be used as a drag reduction device. The thickness / camber control device comprises a structural member capable of coupling to the airfoil at a position forward of the concentrated source of added compression and a control element. The control element is coupled to the structural member and controls the structural member to adjust thickness / camber of the configuration to cancel the far-field effect of the extra compression or concentrated pressure source.
Owner:SUPERSONIC AEROSPACE INT

Application of elastomeric vortex generators

A method of improving aerodynamic performance of foils by the application of conformal, elastomeric vortex generators. The novel use of elastomers allows the application of various forms of vortex generators to sections that have been problematic from engineering and cost considerations. A novel and efficient vortex generator profile is identified, which develops an additional co rotating vortex at low energy expenditure. The mechanisms allow for the application of transverse vortex generators, or Gurney Flaps / Lift Enhancement Tabs / Divergent Trailing Edges, to propellers, rotorblades, and to wings / flaps / control trailing edges. Cove Tabs are additionally described using an elastomeric transverse vortex generator to achieve performance improvements of a high lift device.
Owner:IRELAND PETER

Aeroelastic wing shaping using distributed propulsion

An aircraft has wings configured to twist during flight. Inboard and outboard propulsion devices, such as turbofans or other propulsors, are connected to each wing, and are spaced along the wing span. A flight controller independently controls thrust of the inboard and outboard propulsion devices to significantly change flight dynamics, including changing thrust of outboard propulsion devices to twist the wing, and to differentially apply thrust on each wing to change yaw and other aspects of the aircraft during various stages of a flight mission. One or more generators can be positioned upon the wing to provide power for propulsion devices on the same wing, and on an opposite wing.
Owner:NASA
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products