Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1780 results about "Vertical take off and landing" patented technology

A vertical take-off and landing (VTOL) aircraft is one that can hover, take off, and land vertically. This classification can include a variety of types of aircraft including fixed-wing aircraft as well as helicopters and other aircraft with powered rotors, such as cyclogyros/cyclocopters and tiltrotors.

Aircraft Capable of Vertical Take-Off

The invention relates to an aircraft which can both take off and land vertically and can hover and also fly horizontally at a high cruising speed. The aircraft has a support structure, a wing structure, at least three and preferably at least four lifting rotors and at least one thrust drive. The wing structure is designed to generate a lifting force for the aircraft during horizontal motion. To achieve this the wing structure has at least one mainplane provided with a profile that generates dynamic lift. The wing structure is preferably designed as a tandem wing structure. Each of the lifting rotors is fixed to the support structure, has a propeller and is designed to generate a lifting force for the aircraft by means of a rotation of the propeller, said force acting in a vertical direction. The thrust drive is designed to generate a thrust force on the support structure, said force acting in a horizontal direction. The lifting rotors can have a simple construction, i.e. they can have a simple rigid propeller for example, and a vertical take-off or hovering of the aircraft can be controlled, in a similar manner to quadcopters, by a simple control of the speeds of the lifting rotors. High cruising speeds can be achieved as a result of the additional horizontally acting thrust drive.
Owner:AIRBUS DEFENCE & SPACE

System and Process of Vector Propulsion with Independent Control of Three Translation and Three Rotation Axis

The present invention relates to a propulsion system of a vertical takeoff and landing aircraft or vehicle moving in any fluid or vacuum and more particularly to a vector control system of the vehicle propulsion thrust allowing an independent displacement with six degrees of freedom, three degrees of translation in relation to its centre of mass and three degrees of rotation in relation to its centre of mass. The aircraft displacement ability using the propulsion system of the present invention depends on two main thrusters or propellers and which can be tilted around pitch is (I) by means of tilting mechanisms and, used to perform a forward or backward movement, can be tilted around roll axis (X) by means of tilting mechanisms and, used to perform lateral movements to the right or to the left and to perform upward or downward movements (Z), the main thrusters being further used to perform rotations around the vehicle yaw axis (Z) and around the roll is (X). The locomotion function also uses one or two auxiliary thrusters or propellers and mainly used to control the rotation around the pitch axis, these thrusters or propellers and being fixed at or near the longitudinal is of the vehicle, with there thrust perpendicular or nearly perpendicular to the roll and pitch axis of the vehicle.
Owner:RAPOSO SEVERINO
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products