Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

6801 results about "Helicopter rotor" patented technology

A helicopter main rotor or rotor system is the combination of several rotary wings (rotor blades) and a control system that generates the aerodynamic lift force that supports the weight of the helicopter, and the thrust that counteracts aerodynamic drag in forward flight. Each main rotor is mounted on a vertical mast over the top of the helicopter, as opposed to a helicopter tail rotor, which connects through a combination of drive shaft(s) and gearboxes along the tail boom. The blade pitch is typically controlled by a swashplate connected to the helicopter flight controls. Helicopters are one example of rotary-wing aircraft (rotorcraft). The name is derived from the Greek words helix, helik-, meaning spiral; and pteron meaning wing.

Unmanned aerial vehicle for monitoring infrastructure assets

An unmanned aerial vehicle and associated methods for inspecting infrastructure assets includes a multirotor, electrically driven helicopter apparatus and power supply; a flight computer; positioning and collision avoidance equipment; and at least one sensor such as a camera. The flight computer is programmed for automated travel to and inspection of selected waypoints, at which condition data is collected for further analysis. The method also includes protocols for segmenting the flight path to accomplish sequential inspection of a linear asset such as a power line using limited-range equipment.
Owner:SOUTHERN ELECTRICAL EQUIP

Reconfigurable battery-operated vehicle system

A quadrotor UAV including ruggedized, integral-battery, load-bearing body, two arms on the load-bearing body, each arm having two rotors, a control module mounted on the load-bearing body, a payload module mounted on the control module, and skids configured as landing gear. The two arms are replaceable with arms having wheels for ground vehicle use, with arms having floats and props for water-surface use, and with arms having pitch-controlled props for underwater use. The control module is configured to operate as an unmanned aerial vehicle, an unmanned ground vehicle, an unmanned (water) surface vehicle, and an unmanned underwater vehicle, depending on the type of arms that are attached.
Owner:AEROVIRONMENT INC

Vertical take-off and landing aircraft

A vertical take-off and landing aircraft includes a fixed wing airframe having opposed left and right wings extending from left and right sides, respectively, of a fuselage having opposed leading and trailing extremities and an empennage located behind the trailing extremity. Four fixed, open and horizontal, vertical take-off and landing (VTOL) thrust rotors are mounted to the airframe in a quadrotor pattern for providing vertical lift to the aircraft, and a vertical, forward thrust rotor is mounted to the trailing extremity of the fuselage between the trailing extremity of the fuselage and the empennage for providing forward thrust to the aircraft. The four VTOL thrust rotors are coplanar being and operating in a common plane that is parallel relative to, and being level with, top surfaces of the left and right wings in and around a region of each of the four VTOL thrust rotors.
Owner:L3HARRIS UNMANNED SYST INC

Six rotor helicopter

InactiveUS20100044499A1Desired directionIncrease and decrease altitudeUnmanned aerial vehiclesRemote controlled aircraftRotary wingHelicopter rotor
A rotary wing aircraft is provided having at least three rotor pairs. Each rotor pair has an upper rotor and a lower rotor. During operation, the upper rotor and lower rotor rotate around a shared rotor axis with the upper rotor rotating in a first direction and the lower rotor rotating in an opposite direction By independently controlling the speed of rotation of each upper rotor and each lower rotor the aircraft can be made to ascend, descend, move forward, move backward, move side to side, yaw right and yaw left by only varying the relative speeds of rotations of the upper rotors and lower rotors.
Owner:DRAGANFLY INNOVATIONS

Unmanned Flying Vehicle Made With PCB

The present invention relates to an unmanned flying vehicle using a PCB including a main board controlling power supply and flying operation, a motor rotating a propeller by changing electric energy into mechanical energy, a PCB frame changing a signal from a remote controller and connecting the main board with the motor, a propeller generating an impellent force by from rotation by the motor, a receiver receiving a control signal of the remote controller, and a remote controller controlling a motor rotation speed of a quadrotor and direction change, and accordingly, the structure of the unmanned flying vehicle can be simplified so that the flying vehicle can be down-sized and light-weighted, and assemblability can be improved.
Owner:DREAM SPACE WORLD CORP

Dual rotor helicopter with tilted rotational axes

A rotary wing aircraft apparatus includes a body and a rotor pair connected to the body by an arm. The rotor pair has an upper rotor driven by an upper motor and rotating about an upper rotor axis and a lower rotor driven by a lower motor and rotating about a lower rotor axis. The upper and lower rotor axes are tilted with respect to each other. Tilting the axes away from the arm increases the distance from the rotor blades to the arm, and decreases the risk of the blades of the rotor contacting the arm. In an aircraft with a plurality of arms extending from the body, and a rotor assembly connected to each arm, the arms can be pivoted from a flying position, where the arms extend laterally outward to a folded position where the arms are positioned substantially parallel and adjacent to each other.
Owner:ZENON DRAGAN

Electrical architecture for a rotary wing aircraft with a hybrid power plant

A hybrid power plant (5) for an aircraft (1) comprises at least: a hybrid drive system (37) having a main on-board electricity network (16) and an auxiliary electricity network (34); and a selective adaptation interface (38) arranged to enable electrical energy to be exchanged selectively between the main and auxiliary electricity networks (16; 34). At least one engine and a hybrid drive auxiliary electrical machine (7, 31) are mechanically connected to a transmission (8); said machine (7) being electrically connected to at least one auxiliary electrical bus (36) in parallel with at least one auxiliary device for delivering electric charge.
Owner:EUROCOPTER

High-tension transmission line inspection robot based on multi-rotor aircraft and method using robot

InactiveCN102941920AGood ability to work online in real timeGuaranteed real-time online work abilityApparatus for overhead lines/cablesAircraftsSimulationHigh pressure
The invention discloses a high-tension transmission line inspection robot based on a multi-rotor aircraft, which comprises a four-rotor aircraft and an inspection system, wherein a double-power module supplies power to the four-rotor aircraft and the inspection system; the four-rotor aircraft comprises a robot body, four rotors, four rotor motors and four rotor motor drivers, the rotors, the rotor motors and the rotor motor drivers are matched, the four rotors are fixedly arranged on respective rotor motors, and the four drivers are respectively connected with respective rotor motors 3; and the inspection system performs shooting and data transmission on high-tension transmission lines. The robot disclosed by the invention performs air flight inspection based on four rotors, and is high in air flight stability and good in inspection speed. Through wireless camera shooting control, a visible light camera can be moved to a position near a suspected fault point so as to realize the emphasized detection of suspected fault points of the high-tension transmission lines.
Owner:NANJING UNIV OF SCI & TECH

Rotary-wing vehicle system and methods patent

A rotary-wing apparatus that is aeronautically stable, easy to fly with a multidimensional control, small size, and safe to fly and low cost to produce. The rotary-wing apparatus includes a coaxial counter rotating rotor drive providing lifting power with an inherent aeronautical stability; Auxiliary propellers that face the direction of flight and are located on opposite sides of said coaxial Rotary-wing apparatus and enable flying forwards, backwards and perform yawing; A rotary-wing coaxial helicopter toy that is remotely controlled and safe to fly in doors and out doors, while performing exciting maneuvers even by untrained kids
Owner:ZIMET NACHMAN +1

Dual rotor helicopter with tilted rotational axes

A rotary wing aircraft apparatus includes a body and a rotor pair connected to the body by an arm. The rotor pair has an upper rotor driven by an upper motor and rotating about an upper rotor axis and a lower rotor driven by a lower motor and rotating about a lower rotor axis. The upper and lower rotor axes are tilted with respect to each other. Tilting the axes away from the arm increases the distance from the rotor blades to the arm, and decreases the risk of the blades of the rotor contacting the arm. In an aircraft with a plurality of arms extending from the body, and a rotor assembly connected to each arm, the arms can be pivoted from a flying position, where the arms extend laterally outward to a folded position where the arms are positioned substantially parallel and adjacent to each other.
Owner:ZENON DRAGAN

Gas-powered tip-jet-driven tilt-rotor compound VTOL aircraft

ActiveUS7147182B1Easily take over powering of both rotorLarge thrust augmentation ratioPropellersPump componentsJet engineControl power
A tilt-rotor compound VTOL aircraft has a multiple-flow thrust generator(s) comprising a gas-powered tip-jet driven rotor(s) having a thrust-augmentation ratio of at least two; that tilts about the aircraft's pitch axis wherein the rotor's plane of rotation is substantially horizontal for VTOL operations and the rotor's plane of rotation is substantially vertical forward flight operations. A relatively small fixed-wing sustains the aircraft during forward flight. Compressed exhaust gas from the fan-jet engine(s) is ducted to a manifold having valves which control power to the multiple-flow thrust generator(s) and to the jet exhaust nozzle(s) as supplemental thrust for forward propulsion and yaw control. The manifold also serves to distribute compressed gas to the dead engine side of the aircraft in the event of a dead engine emergency, and to reaction jets for attitude control during VTOL operations. Thus this tilt-rotor aircraft is more efficient, faster, immensely lighter, less complex and less expensive to purchase and maintain than its shaft-driven counterparts.
Owner:FLANIGAN KENNETH WARREN

Unmanned-gyroplane system used for automatic-inspection of bridges and tunnels and navigation method

The invention provides an unmanned-gyroplane system used for automatic inspection of bridges and tunnels and a navigation method, belonging to the field of automatic detection of bridge and tunnel diseases. According to the invention, aimed at the characteristics of bridge and tunnel areas, the unmanned gyroplane inspection system which realizes autonomous navigation in virtue of GPS, laser radar and IMU is designed; and the system realizes autonomous inspection of an open bridge area by using a GPS navigation system and autonomous inspection of a closed tunnel area by using a laser radar navigation system, dodging of bridges, tunnels and motor vehicles via an automatic evadible system, and shooting of images of key areas, wherein the images are sent back to a ground station, and thematic pictures of diseases of bridge and tunnels are generated by the ground station and provided to related personnel for use. The unmanned-gyroplane system provided by the invention has the characteristics of mobility and flexibility in the process of inspection and has the advantages of a wide inspection coverage area, unblocking of traffic, real-time returning of live shots, etc.
Owner:恒华数元科技(天津)有限公司

Helicopter brown-out landing

An electromagnetic emissions free optical signal based helicopter landing assistance arrangement wherein helicopter rotor wash dust cloud-caused obfuscation of the intended landing site and other landing threats are overcome. Real time optical sourced data is collected early and used during helicopter approach to the intended landing site. Upgrading of this data for use during dust cloud presence is accomplished with image processing techniques applied in response to such inputs as helicopter flight data. Military use of the invention especially in current theatre conflict environments is contemplated. Dust cloud related landing hazards are disclosed as a significant difficulty in such environments and generate need for the invention.
Owner:AIR FORCE US SEC THE THE

Line navigation amphibious power circuit comprehensive maintenance robot and circuit maintenance method thereof

The invention relates to a line navigation amphibious power circuit comprehensive maintenance robot and a circuit maintenance method thereof. The line navigation amphibious power circuit comprehensive maintenance robot comprises a flight subsystem, an online subsystem and an operation subsystem, wherein when the robot is in a flight operation mode, the flight subsystem is used for executing far-distance or short-distance cruising of the power circuit; when the robot is in an online operation mode, the online subsystem is used for realizing the moving of the robot on the power circuit; and when the robot is in the online operation mode, the operation subsystem is used for maintaining the power circuit. According to the scheme, high stability, easy operability and controllability and flexibility of a multi-rotor unmanned aerial vehicle technique are utilized, and the specificity and intelligence of online robot technique are also utilized; and by organic combination of the two techniques, the limitation of each technique is overcome, and the superiority of the two techniques in comprehensive maintenance of strong and smart grid is exerted to a maximum extent.
Owner:BEIJING GUOWANG FUDA SCI & TECH DEV +1

Hybrid Propulsion Vertical Take-Off and Landing Aircraft

ActiveUS20170203839A1Out of synchronizationAircraft power plant componentsWingsRotary wingFuselage
A hybrid propulsion aircraft is described having a distributed electric propulsion system. The distributed electric propulsion system includes a turbo shaft engine that drives one or more generators through a gearbox. The generator provides AC power to a plurality of ducted fans (each being driven by an electric motor). The ducted fans may be integrated with the hybrid propulsion aircraft's wings. The wings can be pivotally attached to the fuselage, thereby allowing for vertical take-off and landing. The design of the hybrid propulsion aircraft mitigates undesirable transient behavior traditionally encountered during a transition from vertical flight to horizontal flight. Moreover, the hybrid propulsion aircraft offers a fast, constant-altitude transition, without requiring a climb or dive to transition. It also offers increased efficiency in both hover and forward flight versus other VTOL aircraft and a higher forward max speed than traditional rotorcraft.
Owner:AURORA FLIGHT SCI CORP

Device and method for composition based on small quad-rotor unmanned aerial vehicle

The invention relates to a device and method for composition based on a small quad-rotor unmanned aerial vehicle and belongs to the technical field of mobile robot positioning and navigation. The small quad-rotor unmanned aerial vehicle can rapidly enter a complex environment which a mobile robot cannot enter, carried laser radar is utilized to construct a two-dimensional map in real time according to an SLAM method, self localization and navigation of the unmanned aerial vehicle can be achieved by combining an IMU device and the like, and efficient exploration of a true complex area is achieved; the height of the small quad-rotor unmanned aerial vehicle can be conveniently adjusted to obtain two-dimensional maps on horizontal planes of different heights; the small quad-rotor unmanned aerial vehicle is rapid in movement speed and more flexible, movement and mapping of the small quad-rotor unmanned aerial vehicle are not subject to disturbance of obstacles on the ground, the range limitation of a detecting robot is broken through, the small quad-rotor unmanned aerial vehicle is extremely high in practical value, and accurate and rapid map construction can be achieved; compared with robot environment composition, the rotor wing robot can perform environment scouting more rapidly and more flexibly, and three-dimensional spatial images can be obtained.
Owner:NORTHEASTERN UNIV

Auto-disturbance-rejection automatic flight control method for four-rotor aircraft

InactiveCN102830622ABuild precision is not highImprove anti-interference abilityAdaptive controlEnvironmental diversityAutomatic control
The invention relates to a method for autonomous flight of a four-rotor unmanned aircraft by using an auto-disturbance-rejection control technique, belonging to the automatic control field of unmanned aircraft. The method comprises the steps of: respectively making differences between an output xld after arranging a transient process of a target value and an output of an extended state observer, and differential of the output xld and the output of the extended state observer respectively, and then carrying out nonlinear conversion on two differences to obtain a nonlinear feedback control law u0; with regard to an auto-disturbance-rejection controller with three attitude angles and vertical displacement, making difference with feedback of the extended state observer to obtain an output as an input of a corresponding channel of a four-rotor system and the extended state observer; and with regard to an auto-disturbance-rejection controller with forward and side displacements, directly using u0 as the input of the corresponding channel of the four-rotor system and the extended state observer, and feeding back the actual value to the extended state observer after the corresponding channel of the four-rotor system responses, so as to form an close-loop auto-disturbance-rejection controller. The method is strong in capacity of resisting disturbance, and the problems of difficulty in modeling of the four-rotor system, environmental diversity in the flight process, and frequent interferences are effectively solved.
Owner:BEIJING INSTITUTE OF TECHNOLOGYGY

Compound helicopter

The compound helicopter is a hybrid combination of a helicopter and a fixed wing aircraft. A conventional helicopter is modified with a nose-mounted tractor propeller to provide thrust for forward flight. Wings are added to provide lift during forward flight. With the propeller providing thrust and the wings lift during forward flight, the helicopter rotor blades are unloaded during cruising flight to allow increased forward speed by avoiding limitations of conventional helicopters, including retreating rotor blade stall and maximum rotor blade tip speeds. A single powerplant drives both the main rotor and the nose-mounted propeller. The compound helicopter employs high aspect ratio wings with large flaps that may be extended to reduce vertical drag during vertical flight and hovering operations.
Owner:LOPER ARTHUR W

Multi-rotor unmanned aerial vehicle for fast surveying and surveying method of multi-rotor unmanned aerial vehicle

InactiveCN104386249APrecise positioningAccurate flight attitudeAircraft componentsRotocraftAviationCamera lens
The invention discloses a multi-rotor unmanned aerial vehicle for fast surveying and a surveying method of the multi-rotor unmanned aerial vehicle, and belongs to the technical field of aviation surveying. The multi-rotor unmanned aerial vehicle comprises a rack, flight lifting mechanisms, a cloud deck mechanism and a control mechanism, wherein four plane arms extend out from the rack along a plane body, the lower part of the plane body is provided with foot stools, the plane arms and the foot stools are of foldable structures; and the flight lifting mechanisms are arranged at tail ends of the four plane arms, the cloud deck mechanism is mounted at the bottom of the unmanned aerial vehicle body through a mounting rod; the cloud deck mechanism is provided with a camera and is used for regulating an optical axis of the camera to be always perpendicular to the ground; and the control mechanism is used for controlling the unmanned aerial vehicle to fly to the appointed height and regulating the overturn of the cloud deck mechanism. The surveying method disclosed by the invention can be used for determining the relation between the shooting height and the imaging proportion by analyzing camera lens parameters, and then setting the flight line of the unmanned aerial vehicle. Through the adoption of the unmanned aerial vehicle, the surveying result can be fast obtained, and the surveying precision and efficiency are high.
Owner:安徽靓马信息科技股份有限公司

Battery automatic replacement system of small-sized multi-rotor-wing unmanned aerial vehicle

The invention discloses a battery automatic replacement system of a small-sized multi-rotor-wing unmanned aerial vehicle. The battery automatic replacement system comprises a multi-track trolley, a battery storage disk, an unmanned aerial vehicle landing gear, a landing gear fixing plate, a landing gear fixing plate support, a battery storage disk support and a mechanical arm, wherein the landing gear fixing plate is arranged above the multi-track trolley, and is fixedly connected with the multi-track trolley through the landing gear fixing plate support; the unmanned aerial vehicle landing gear is arranged above the landing gear fixing plate; a battery inlet matched with the size of a battery is formed in the center of the fixing plate; the battery storage disk is arranged below the landing gear fixing plate, and is fixedly connected with the multi-track trolley through the battery storage disk support; and the mechanical arm is arranged below the battery storage disk. The battery automatic replacement system adopts a turntable type battery storage bin, so that five times of battery replacement can be performed at most through one step; and the battery automatic replacement system adopts a blind plugging type battery installation mode to achieve effects of convenience, fastness and high efficiency.
Owner:徐州新电高科电气有限公司

Small four-rotor aircraft control system and method based on airborne sensor

The invention relates to the technical field of four-rotor aircrafts, in particular to a small four-rotor aircraft control system and method based on an airborne sensor. The small four-rotor aircraft control system based on the airborne sensor comprises an inertia measurement unit module, a microprocessor, an electronic speed controller, an ultrasonic sensor, an optical flow sensor, a camera, a wireless module and a DC brushless motor. By merging the information of a light and low-cost airborne sensor system, the six-DOF flight attitude of the aircraft is estimated in real time, and a closed-loop control strategy comprising inner-loop attitude control and outer-ring position control is designed. Under the environment without a GPS or an indoor positioning system, flight path control and aircraft formation control based on the leader followed strategy over the rotorcraft are achieved through the airborne sensor system and the microprocessor, wherein the flight path control comprises autonomous vertical take-off and landing, indoor accurate positioning, autonomous hovering and autonomous flight path point tracking. According to the small four-rotor aircraft control system and method, a reliable, accurate and low-cost control strategy is provided for achieving autonomous flight of the rotorcraft.
Owner:SUN YAT SEN UNIV

High performance VTOL convertiplanes

A single-tilt-rotor VTOL airplanes have a tiltable rotor attached to an elongated power pod containing the collective and cyclical pitch mechanism, and transmission. The power pod is pivotably attached to a base that is slidably mounted on a pair of slotted guide beams attached on top of the roof of the fuselage. The guide beams run longitudinally from the front of the aircraft to past the center of gravity (CG) of the aircraft in order to transport the power pod from the front section to the center section when converting from the horizontal cruising mode to the VTOL mode. In the horizontal cruising mode, the power pod perched horizontally on top of the fuselage front section with sufficient clearance for the rotor to rotate in front of the aircraft. Upon transitioning to the VTOL mode, a telescopic actuator is used to pivot the power pod vertically while a cable-winch system is used to move the entire power pod and base assembly rearwardly to stop at the center of gravity of the aircraft, and vice versa, thus allowing the power pod to travel significantly rearward and forward as required for proper balancing of vertical lift as the power pod pivots 90 degrees during transition from VTOL mode to the cruising mode. A single piston engine, or a single or pair of turbofan engines, mounted slightly to the rear of the CG, have drive shafts that can be clutched and mated onto respective receiving shaft from the transmission within the power pod in order to power the tiltable rotor. The engine is also attached to a propeller for horizontal propulsion, or if turbofan engines are used, jet thrust is generated for horizontal cruise. A small anti-torque rotor or ducted fan toward the tail of the aircraft is mechanically coupled to the engine via a drive shaft to provide the necessary side-way thrust to overcome the main rotor's torque. In the horizontal cruising mode, the tiltable rotor is allowed to windmill slowly at a minimum rotational speed necessary to maintain the integrity of the rotor blades. The same propulsion principle can be applied to VTOL airplanes having more than one tiltable rotor, thereby can potentially increase the speed, range and reliability of current twin-wing-mounted-tilt-rotor aircraft. A pair of high-aspect-ratio wings on both sides of the fuselage provide highly efficient lift during cruising flight with very little induced drag. Conventional horizontal and vertical tail planes are used for directional stability in the cruising mode.
Owner:PHAM ROGER N

Tri-Rotor Aircraft Capable of Vertical Takeoff and Landing and Transitioning to Forward Flight

Systems, methods, and devices provide a vehicle, such as an aircraft, with rotors configured to function as a tri-copter for vertical takeoff and landing (“VTOL”) and a fixed-wing vehicle for forward flight. One rotor may be mounted at a front of the vehicle fuselage on a hinged structure controlled by an actuator to tilt from horizontal to vertical positions. Two additional rotors may be mounted on the horizontal surface of the vehicle tail structure with rotor axes oriented vertically to the fuselage. For forward flight of the vehicle, the front rotor may be rotated down such that the front rotor axis may be oriented horizontally along the fuselage and the front rotor may act as a propeller. For vertical flight, the front rotor may be rotated up such that the front rotor axis may be oriented vertically to the fuselage, while the tail rotors may be activated.
Owner:NASA

Method of piloting a multiple rotor rotary-wing drone to follow a curvilinear turn

InactiveUS8473125B2Reduce number of degree of freedomModel aircraftPropellersRemote controlUncrewed vehicle
The respective motors of the drone (10) can be controlled to rotate at different speeds in order to pilot the drone both in attitude and speed. A remote control appliance produces a command to turn along a curvilinear path, this command comprising a left or right turning direction parameter and a parameter that defines the radius of curvature of the turn. The drone receives said command and acquires instantaneous measurements of linear velocity components, of angles of inclination, and of angular speeds of the drone. On the basis of the received command and the acquired measurements, setpoint values are generated for a control loop for controlling motors of the drone, these setpoint values controlling horizontal linear speed and inclination of the drone relative to a frame of reference associated with the ground so as to cause the drone to follow curvilinear path (C) at predetermined tangential speed (u).
Owner:PARROT

Nonlinear output feedback flight control method for quad-rotor unmanned aerial vehicle

ActiveCN103365296ASolving Polarity ProblemsSolve the problem that it is difficult to accurately measure the speedPosition/course control in three dimensionsDynamic equationInertial coordinate system
The invention discloses a nonlinear output feedback flight control method for a quad-rotor unmanned aerial vehicle. The nonlinear output feedback flight control method for the quad-rotor unmanned aerial vehicle comprises the following steps of: (1) determining a kinematic model of the quad-rotor unmanned aerial vehicle under an inertial coordinate system and a kinematic model of the quad-rotor unmanned aerial vehicle under a body coordinate system; (2) designing an attitude control system of the quad-rotor unmanned aerial vehicle; defining tracking errors of the attitude angle and the angular speed of the quad-rotor unmanned aerial vehicle; designing a filter to perform online estimation on an angular speed signal and obtain an open loop dynamic equation of the tracking errors; and estimating unknown functions in the open loop dynamic equation by adopting neural network feedforward, and designing attitude system control output of the quad-rotor unmanned aerial vehicle; and (3) designing a height control subsystem of the quad-rotor unmanned aerial vehicle; defining height tracking errors and defining auxiliary filtering tracking errors; and designing a height subsystem controller. According to the nonlinear output feedback flight control method for the quad-rotor unmanned aerial vehicle disclosed by the invention, the polarity problem is effectively avoided, a wide-range stable control effect is achieved, the robust performance of the system is greatly improved, and the dependence of a flight controller on an airborne sensor is greatly reduced.
Owner:TIANJIN UNIV

Three-layer airborne flight control device for micro four-rotor aerial vehicle

InactiveCN102424112AImprove interoperabilityGet rid of manual operation dependenceAircraft power plantsBrushless motorsMotor speed
The invention relates to a three-layer airborne flight control device for a micro four-rotor aerial vehicle, and belongs to the technical field of micro aerial vehicles. A navigation control layer consists of a navigation controller, an inertial measurement unit, a micro laser distance measuring sensor, a micro vision sensor and a wireless fidelity (WiFi) wireless network; an attitude control layer consists of an attitude controller, a gyroscope, an accelerometer, a magnetometer, a pressure sensor, an ultrasonic sensor, a remote controller and receiver unit and a ZigBee wireless communication unit; and a motor speed regulation control layer consists of four brushless motor speed regulators and four actuator units. The attitude controller is added, so that the whole flight device becomes intelligent, can perform autonomous navigation positioning, can avoid obstacles, is independent of manual operation of a remote controller, and becomes an intelligent robot in the real sense.
Owner:NORTHEASTERN UNIV

Multicopters with variable flight characteristics

An aircraft (40a) is provided that includes a plurality of arms (41, 42, 43, 44) with selected arms having the ability to either adjust their length, have arm segments operative to move about an articulated joint in two or three dimensions, or have one arm operative to adjust an angle between the one arm and another arm, or any combination of the foregoing. Thrust generators are repositionably mounted on selected arms, and a control system enables automated, on-board, or remote control of the thrust generators, repositioning of the thrust generators on the arms, adjustment in the length of the selected arms, the movement of selected arms about the articulated joints, and adjustment of the angle between two or more arms, all while maintaining directional control of the aircraft in flight or on the ground. The aircraft has operational capabilities that exceed existing designs and facilitates manned and unmanned delivery of cargo and transportation of passengers.
Owner:ROBODUB

Rotorcraft control system

A system (100) for controlling a rotorcraft (1) including a rotor (10), at least one variable-pitch propulsion propeller (6L, 6R), and a motor (5) for driving the rotor and the propeller(s), the system includes:a member (101, 101A, 102, 103, 104) for generating a propeller pitch setpoint (θp*+θd*, θp*−θd*) as a function at least of a thrust variation command (TCL);a member (105, 105A) for generating a setpoint (RPM*) for the drive speed (RPM) of the rotor and the propeller(s), as a function at least of the travel speed (VTAS) of the rotorcraft; anda member (106) for generating a setpoint (NG*) for the engine speed as a function at least of the thrust command (TCL), of the drive speed setpoint (PTM*), and of a rotor collective pitch command (θ0).
Owner:EUROCOPTER
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products