Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

194 results about "Flight control surfaces" patented technology

Aircraft flight control surfaces are aerodynamic devices allowing a pilot to adjust and control the aircraft's flight attitude. Development of an effective set of flight control surfaces was a critical advance in the development of aircraft. Early efforts at fixed-wing aircraft design succeeded in generating sufficient lift to get the aircraft off the ground, but once aloft, the aircraft proved uncontrollable, often with disastrous results. The development of effective flight controls is what allowed stable flight.

Aircraft flight control surface actuation system communication architecture

A flight control surface actuation system includes a plurality of smart actuators to move aircraft flight control surfaces between extended and retracted positions. The system includes a high availability network between the flight control avionics and the smart actuators, and between each of the smart actuators. The system configuration allows network nodes associated with each smart actuator to monitor and control one another, under higher level control of the aircraft flight control avionics, to provide multiple levels of health monitoring, control, and shutdown capability.
Owner:HONEYWELL INT INC

Wing-body load alleviation for aircraft

A computer implemented method, apparatus, and computer usable program product for symmetric and anti-symmetric control of aircraft flight control surfaces to reduce wing-body loads. Commands are sent to symmetrically deploy outboard control surfaces to shift wing air-loads inboard based on airplane state and speed brake deployment. Surface rate retraction on a wing with peak loads is limited to reduce maximum loads due to wheel checkback accompanied by utilization of opposite wing control surfaces to retain roll characteristics. Airloads are shifted inboard on a swept wing to move the center of pressure forward, thereby reducing the tail load required to perform a positive gravity maneuver. In a negative gravity maneuver, speed brakes are retracted, thereby reducing the positive tail load and reducing the aft body design loads. High gain feedback commands are filtered from wing structural modes above one hertz by a set of linear and non-linear filters.
Owner:THE BOEING CO

Flight control actuation system

A flight control actuation system comprises a controller, electromechanical actuator and a pneumatic actuator. During normal operation, only the electromechanical actuator is needed to operate a flight control surface. When the electromechanical actuator load level exceeds 40 amps positive, the controller activates the pneumatic actuator to offset electromechanical actuator loads to assist the manipulation of flight control surfaces. The assistance from the pneumatic load assist actuator enables the use of an electromechanical actuator that is smaller in size and mass, requires less power, needs less cooling processes, achieves high output forces and adapts to electrical current variations. The flight control actuation system is adapted for aircraft, spacecraft, missiles, and other flight vehicles, especially flight vehicles that are large in size and travel at high velocities.
Owner:HONEYWELL INT INC

Multi-axis serially redundant, single channel, multi-path fly-by-wire flight control system

A multi-axis serially redundant, single channel, multi-path fly-by-wire control system comprising: serially redundant flight control computers in a single channel where only one “primary” flight control computer is active and controlling at any given time; a matrix of parallel flight control surface controllers including stabilizer motor control units (SMCU) and actuator electronics control modules (AECM) define multiple control paths within the single channel, each implemented with dissimilar hardware and which each control the movement of a distributed set of flight control surfaces on the aircraft in response to flight control surface commands of the primary flight control computer; and a set of (pilot and co-pilot) controls and aircraft surface / reference / navigation sensors and systems which provide input to a primary flight control computer and are used to generate the flight control surface commands to control the aircraft in flight in accordance with the control law algorithms implemented in the flight control computers.
Owner:BOMBARDIER CORP +1

Method for reducing fuel consumption in aircraft

A method and means are provided for increasing the aerodynamic efficiency of an airfoil employed by an aircraft. The method utilizes the primary flight control surfaces (11) (12) contiguous to the airfoil's trailing edge and relocates these devices to novel positions (21) (23) resulting in an expanded cord and enhanced camber for the aircraft wing (13). Self-adjusting push-pull rods (25) (60) replace conventional solid rods (24) where necessary in combination with a re-rigging of the flight control surfaces (11) (12) to predetermined positions (21) (23). Any voids created by this modification between the shared upper and lower fluid flow surfaces of the aircraft wing (13) and its flight control surfaces (11) (12) are eliminated through the installation of appropriate structure (40) or seal (43). Thus the aircraft wing (13) retains a unique geometric profile as a usual configuration.
Owner:AEROTECH SERVICES +1

Non-planar adaptive wing solar aircraft

A system and method for assembling and operating a solar powered aircraft, composed of one or more modular constituent wing panels. Each wing panel includes at least one hinge interface that is configured to rotationally interface with a complementary hinge interface on another wing panel. When a first and second wing panel are coupled together via the rotational interface, they can rotate with respect to each other within a predetermined angular range. The aircraft further comprises a control system that is configured to acquire aircraft operating information and atmospheric information and use the same alter the angle between the wing panels, even if there are multiple wing panels. One or more of the wing panels can include photovoltaic cells and / or solar thermal cells to convert solar radiation energy or solar heat energy into electricity, that can be used to power electric motors. Further, the control system is configured to alter an angle between a wing panel and the horizon, or the angle between wing panels, to maximize solar radiation energy and solar thermal energy collection. A tail assembly for the aircraft includes a rotational pivot that allows the flight control surfaces to rotate to different orientations to avoid or reduce flutter loads and to increase solar radiation energy and / or solar thermal energy collection from photovoltaic cells and / or solar thermal cells the can be located on the tail structure associated with the flight control surfaces.
Owner:AURORA FLIGHT SCI CORP

Fault tolerant automatic control system utilizing analytic redundancy

Method and apparatus for a fault tolerant automatic control system for a dynamic device having a sensor and a predetermined control algorithm include structure and steps for receiving a status signal from the sensor. Structure and steps are provided for transforming the sensor status signal and a predetermined reference signal into a linear time invariant coordinate system, generating a sensor estimate in the linear time invariant coordinate system based on the transformed sensor status signal and the transformed reference signal, transforming the sensor estimate into a physical coordinate system, detecting an error in the sensor status signal based on a comparison of the transformed sensor estimate and the sensor status signal, and reconfiguring the predetermined control algorithm based on the detected error. Preferably, the apparatus and method are implemented in an aircraft flight control system capable of detecting an aircraft sensor fault and reconfiguring the flight control program such that flight control surface actuators are commanded by ignoring or mitigating the failed sensor.
Owner:DABULAMANZI HLDG

Fault tolerant automatic control system utilizing analytic redundancy

Method and apparatus for a fault tolerant automatic control system for a dynamic device having a sensor and a predetermined control algorithm include structure and steps for receiving a status signal from the sensor. Structure and steps are provided for transforming the sensor status signal and a predetermined reference signal into a linear time invariant coordinate system, generating a sensor estimate in the linear time invariant coordinate system based on the transformed sensor status signal and the transformed reference signal, transforming the sensor estimate into a physical coordinate system, detecting an error in the sensor status signal based on a comparison of the transformed sensor estimate and the sensor status signal, and reconfiguring the predetermined control algorithm based on the detected error. Preferably, the apparatus and method are implemented in an aircraft flight control system capable of detecting an aircraft sensor fault and reconfiguring the flight control program such that flight control surface actuators are commanded by ignoring or mitigating the failed sensor.
Owner:DABULAMANZI HLDG

Flight control surface actuation system with redundantly configured and lockable actuator assemblies

A flight control surface actuator assembly includes a pair of flight control surface actuators and a pivot arm. One of the flight control surface actuators is coupled to a flight control surface and a static airframe structure, the other flight control surface actuator is coupled to the flight control surface and the pivot arm. The pivot arm coupled to the static airframe structure and is configured to pivot relative to the second flight control surface actuator and the static airframe structure.
Owner:HONEYWELL INT INC

Position sensing system

A passive sensing system for determining a physical position of a mechanical device includes an encoding system configured to convert a position signal representative of the physical position of the mechanical device into an encoded signal in a binary format. The sensing system also comprises a plurality of secondary optical paths coupled to a primary optical path positioned between a light source and the encoding system. The encoded signal comprises a plurality of pulses of light each sequentially delayed by the secondary optical paths. A system for determining a physical position of a flight control surface of an aircraft is also disclosed. A method for determining a physical position of a flight control surface of an aircraft is also disclosed. A passive sensing system for determining a physical position of a flight control surface of an aircraft is also disclosed.
Owner:ROCKWELL COLLINS INC

Flight control surface actuation force fight mitigation system and method

A system and method of mitigating a force fight between hydraulically-operated actuators that are coupled to a single flight control surface is provided. The differential fluid pressure across each hydraulically-operated actuator is sensed. The position of a user interface is sensed using a plurality of user interface position sensors. Flight control surface position is sensed using one or more position sensors. The sensed differential pressures, the sensed user interface positions, and the sensed flight control surface position are used to generate a plurality of substantially equal actuator commands.
Owner:HONEYWELL INT INC

Distributed flight control surface actuation system

An aircraft flight control surface actuation system includes a plurality of flap actuators, and a plurality of slat actuators. The actuators receive actuator position commands from an actuator control unit and, in response, move flaps and slats between stowed and deployed positions. The flight control surface actuator control unit includes a plurality of independent actuator control channels. One or more of the independent actuator control channels is coupled to both a flap actuator and a slat actuator, and is configured to selectively supply the actuator position commands thereto.
Owner:HONEYWELL INT INC

Flight control surface actuator assembly including a free trial mechanism

A flight control surface actuator includes a mechanism that enables the actuator translation member to be selectively decoupled from the actuator rotating member. The actuator includes an actuation member, a translation member, an extension member, and a locking member. The actuation member is adapted to receive a drive force and is configured, in response to the drive force, to rotate and cause the translation member to translate. The extension member surrounds at least a portion of the translation member and is configured to be selectively coupled to, and decoupled from, the translation member. The locking member surrounds at least a portion of the extension tube and is movable between a lock position, in which the locking member couples the extension member to the translation member, and a release position, in which the locking member decouples the extension member from the translation member.
Owner:HONEYWELL INT INC

Flight control surface actuation system with redundantly configured actuator assemblies

A flight control surface actuator assembly includes a plurality of flight control surface actuators, and a pivot arm. Each flight control surface actuator is adapted to couple to a flight control surface, and each is further adapted to receive a drive force and is operable, upon receipt thereof, to move between at least an extended position and a retracted position. The pivot arm is rotationally coupled to, and is configured to pivot relative to, each of the flight control surface actuators, the pivot arm is also adapted to be rotationally coupled to, and configured to pivot relative to, a static airframe structure.
Owner:HONEYWELL INT INC

Dynamic Adjustment of Wing Surfaces for Variable Camber

The movable surfaces affecting the camber of a wing are dynamically adjusted to optimize wing camber for optimum lift / drag ratios under changing conditions during a given flight phase. In a preferred embodiment, an add-on dynamic adjustment control module provides command signals for optimum positioning of trailing edge movable surfaces, i.e., inboard flaps, outboard flaps, ailerons, and flaperons, which are used in place of the predetermined positions of the standard flight control system. The dynamic adjustment control module utilizes inputs of changing aircraft conditions such as altitude, Mach number, weight, center of gravity, vertical speed and flight phase. The dynamic adjustment control module's commands for repositioning the movable surfaces of the wing are transmitted through the standard flight control system to actuators for moving the flight control surfaces.
Owner:THE BOEING CO

Actuator system for aerospace controls and functions

An actuator system (10, 100, 200) for use in an aircraft control or operating system, comprising a controller (12) operable in response to an input for generating a control signal, and an electrical actuator (20) responsive to the control signal for operating an aircraft flight control surface or other aircraft apparatus. A tab (24; 124) for aerodynamically assisting the electrical actuator is also provided in order to reduce the load on the electrical actuator in use.
Owner:BAE SYSTEMS PLC

Electric flight control surface actuation system electronic architecture

An electric flight control surface actuation system is implemented using a low level control section and a high power section. The low level control section is disposed within an electronics bay within the aircraft, and is in operable communication with one or more flight computers via a communication bus. The flight computers supply flight control surface position commands to the low level control section, which in turn transmits actuator commands to the high power section via a plurality of redundant communication links. The high power section is disposed remotely from the low level control section and, in addition to being in operable communication with the low level control section, is coupled to an aircraft power bus and to each of the actuators. The high power section receives the actuator position commands transmitted from the low level control section and, in response, selectively energizes the actuators from the aircraft power bus.
Owner:HONEYWELL INT INC

Ballistic Guidance Control for Munitions

A method and system for guiding and controlling an ordinance body having a trajectory and a bore sight angle including making corrections to the trajectory based on bore sight angle vs. time history. The system is incorporated with existing fuse components in a replacement kit for existing munitions. The method determines nominal time values of the ballistic trajectory of the munition in relation to launch time and determines deviation from the nominal time values by an algorithm by analyzing signals received from a source of radiation located at the target. A processor determines lateral (left / right) and range errors and provides steering commands to a plurality of flight control surfaces mounted on the munition.
Owner:BAE SYST INFORMATION & ELECTRONICS SYST INTERGRATION INC

Method for reducing fuel consumption in aircraft

A method and means are provided for increasing the aerodynamic efficiency of an airfoil employed by an aircraft. The method utilizes the primary flight control surfaces (11) (12) contiguous to the airfoil's trailing edge and relocates these devices to novel positions (21) (23) resulting in an expanded cord and enhanced camber for the aircraft wing (13). Self-adjusting push-pull rods (25) (60) replace conventional solid rods (24) where necessary in combination with a re-rigging of the flight control surfaces (11) (12) to predetermined positions (21) (23). Any voids created by this modification between the shared upper and lower fluid flow surfaces of the aircraft wing (13) and its flight control surfaces (11) (12) are eliminated through the installation of appropriate structure (40) or seal (43). Thus the aircraft wing (13) retains a unique geometric profile as a usual configuration.
Owner:AEROTECH SERVICES +1

Electric flight control surface actuation system for aircraft flaps and slats

An aircraft flight control surface actuation system includes a plurality of electric motors-driven flap actuators, and a plurality of electric motor-driven slat actuators. The motor-driven actuators receive activation signals from flap and slat actuator controllers and is, in response to the activation signals, move the flaps and slats between stowed and a deployed positions. The flap and slat actuator controllers each include a plurality of independent actuator control channels that independently supply the activation signals to the motor-driven actuators.
Owner:HONEYWELL INT INC

Semi-physical digital simulation control platform of aircraft cockpit

The invention discloses a semi-physical digital simulation control platform of an aircraft cockpit, belonging to the technical field of aircraft simulation control. The digital simulation control platform comprises a cockpit vision system, a flight control device, a data acquisition system, a display device which is arranged in a simulation cockpit and a central control board and used for real-time display of data of instruments, a simulation computer, an instrument computer, and a switch connected with simulation computer network equipment and instrument computer network equipment. The simulation computer can obtain display data of the instruments in the cockpit according to a simulation model of an aircraft system and transmit the display data to the instrument computer through a UDP (user datagram protocol), and the instrument computer can drive virtual instruments to realize real-time display of the state of an aircraft by output data of the simulation computer. The platform can realize real-time display of dynamic simulation data by the virtual instruments according to a simulation result of the model of the aircraft system and has the advantages of high fidelity and low cost.
Owner:NANJING UNIV OF AERONAUTICS & ASTRONAUTICS

Blade seal

A blade seal comprises a flexible member having a relatively thick edge opposite a relatively thin edge, and an actuator at least partially embedded in the flexible member for actively deflecting the thin edge with respect to the thick edge upon activation of the actuator. The blade seal may be fixed to an aerodynamic trailing edge of either a fixed aerofoil portion or a flight control surface of an aerofoil for sealing between the fixed aerofoil portion and the flight control surface. Also, a method of sealing an aerofoil using the blade seal.
Owner:AIRBUS OPERATIONS LTD

Model toy aircraft

A model toy aircraft is adapted for remote control operation on land, on the water and in the air. The toy aircraft includes a pair of pontoons spaced apart by a horizontal wing forming a tunnel hull. A tail section is provided including one or more moveable directional flight control surfaces. A motive mechanism is mounted directly or indirectly to the wing for propelling the aircraft.
Owner:BUTLER ERNEST +1

Flight control systems

A system and method for a controlling an aircraft with flight control surfaces that are controlled both manually and by a computing device is disclosed. The present invention improves overall flight control operation by reducing the mechanical flight control surface components while providing sufficient back-up control capability in the event of either a mechanical or power-related failure. Through the present invention, natural feedback is provided to the operator from the mechanical flight control surface which operates independent of computer-aided flight control surfaces.
Owner:TEXTRON INNOVATIONS

Load optimized redundant flight control surface actuation system and method

An aircraft flight surface control system and method simultaneously provides the benefits of both an active / active system architecture and in active / standby system architecture. The system is preferably implemented using hydraulic actuator assemblies and electromechanical actuator assemblies coupled to the same flight control surface. During normal system operations the electromechanical actuator assemblies are energized to supply a relatively minimal force to associated flight control surfaces. In effect, the electromechanical actuators, although energized, may be pulled along by the associated hydraulic actuator assemblies, until needed. Thus, the electromechanical actuator assemblies are controlled in a manner that closely resembles the active / standby architecture.
Owner:HONEYWELL INT INC

Agricultural unmanned aircraft controlled by Beidou satellite and GPS (global positioning system)

The invention discloses an agricultural unmanned aircraft controlled by a Beidou satellite and a GPS (global positioning system). The agricultural unmanned aircraft comprises an aircraft body and a ground control system, wherein the ground control system comprises a task planning and control station, a power supply cart and an antenna system; the aircraft body comprises an airplane body, a propelling device, a chemical spraying device, a flight manipulating device, a power supply system, an airplane-borne navigation device and a flight data terminal; the task planning and control station comprises a task planning device, a control and display control platform, an image and remote measuring facility, a computer, a signal processor, a ground data terminal and a communication device; the airplane-borne navigation device comprises a GPS receiver, a Beidou receiver and a navigation control system; the GPS receiver comprises a GPS receiver antenna unit, a GPS receiver host unit and a power supply; the Beidou receiver comprises a receiving antenna, a transmitter and a Beidou receiver host unit; the navigation control system is used for preprocessing the GPS navigation information and Beidou navigation information and uniformly changing a coordinate system and a datum point.
Owner:胡茂东

Limited authority and full authority mode fly-by-wire flight control surface actuation control system

An aircraft flight control surface actuation control system includes an actuator control unit and a flight control module. The actuator control unit includes at least two independent actuator control channels to generate limited authority flight control surface actuator commands based on pilot inceptor position signals and flight control augmentation data. The flight control module supplies the flight control augmentation data to each of the independent actuator control channels, determines operability of each of the actuator control channels and, based on the determined operability of each independent actuator control channel, selectively prevents one of the independent actuator control channels from supplying the limited authority flight control surface actuator commands. The flight control module may also generate full authority flight control surface actuator commands for supply to flight control surface actuators.
Owner:HONEYWELL INT INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products