Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

831results about "Response signal detection" patented technology

Fluid parameter measurement in pipes using acoustic pressures

At least one parameter of at least one fluid in a pipe is measured using a spatial array of acoustic pressure sensors placed at predetermined axial locations along the pipe 12. The pressure sensors provide acoustic pressure signals, which are provided to a signal processing system that determines the speed of sound amix of the fluid (or mixture) in the pipe 12 using acoustic spatial array signal processing techniques. Numerous spatial array processing techniques may be employed to determine the speed of sound amix. The speed of sound amix is provided to another logic system that calculates the percent composition of the mixture, e.g., water fraction, or any other parameter of the mixture or fluid which is related to the sound speed amix. The signal processing system may also determine the Mach number Mx of the fluid. The acoustic pressure signals measured are lower frequency (and longer wavelength) signals than those used for ultrasonic flow meters, and thus are more tolerant to inhomogeneities in the flow. No external source is required and thus may operate using passive listening. The invention will work with arbitrary sensor spacing and with as few as two sensors if certain information is known about the acoustic properties of the system.
Owner:WEATHERFORD TECH HLDG LLC

Fluid parameter measurement for industrial sensing applications using acoustic pressures

In industrial sensing applications at least one parameter of at least one fluid in a pipe 12 is measured using a spatial array of acoustic pressure sensors 14,16,18 placed at predetermined axial locations x1, x2, x3 along the pipe 12. The pressure sensors 14,16,18 provide acoustic pressure signals P1(t), P2(t), P3(t) on lines 20,22,24 which are provided to signal processing logic 60 which determines the speed of sound amix of the fluid (or mixture) in the pipe 12 using acoustic spatial array signal processing techniques with the direction of propagation of the acoustic signals along the longitudinal axis of the pipe 12. Numerous spatial array-processing techniques may be employed to determine the speed of sound amix. The speed of sound amix is provided to logic 48, which calculates the percent composition of the mixture, e.g., water fraction, or any other parameter of the mixture, or fluid, which is related to the sound speed amix. The logic 60 may also determine the Mach number Mx of the fluid. The acoustic pressure signals P1(t), P2(t), P3(t) measured are lower frequency (and longer wavelength) signals than those used for ultrasonic flow meters, and thus is more tolerant to inhomogeneities in the flow. No external source is required and thus may operate using passive listening. The invention will work with arbitrary sensor spacing and with as few as two sensors if certain information is known about the acoustic properties of the system. The sensor may also be combined with an instrument, an opto-electronic converter and a controller in an industrial process control system.
Owner:EXPRO METERS

Phased array ultrasonic detection, data acquisition and process device

The invention discloses a phased array ultrasonic detection data acquisition and processing unit, comprising a USB bus and a main control computer; the USB bus communication is connected with a data acquisition and processing card component, and a 64 array element ultrasound phased array transducer in sequence; the data acquisition and processing card component comprises 16 completely same data acquisition and processing cards; the data acquisition and processing card comprises a four-way ultrasonic emission/reception and signal pretreatment circuit, an A/D conversion module, an FPGA module and a DSP microprocessor module, a reset circuit, and a power supply module, which are connected in a coordinating way; the data acquisition and processing card component has 64 input channels and 16 output channels, wherein every four input channels and one output channel have a data acquisition and processing card correspondingly; by controlling the time delaying of pulse excitating or receiving of each array element in a transducer array, and changing the phase relationship of sound wave emitted or received by each array element when reaching or coming from a cetain point in an object, the flexible deflection and focusing of the acoustic beam are achieved, and the transverse movement of the acoustic beam position can also be realized by selecting the needed array element group.
Owner:NINGBO UNIVERSITY OF TECHNOLOGY
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products