Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

590 results about "Ultrasound pulse" patented technology

An ultrasound pulse wave is generated by a applying a short duration electrical signal (a pulse) to an ultrasound transducer. The pulse can be a a signal like this: u(t) = sin(2pi5MHzt) No transducer can convert the electrical pulse into a perfectly matching pulse of the same shape.

Wide or multiple frequency band ultrasound transducer and transducer arrays

Ultrasound bulk wave transducers and bulk wave transducer arrays for wide band or multi frequency band operation, in which the bulk wave is radiated from a front surface and the transducer is mounted on a backing material with sufficiently high absorption that reflected waves in the backing material can be neglected. The transducer is formed of layers that include a high impedance section comprised of at least one piezoelectric layer covered with electrodes to form an electric port, and at least one additional elastic layer, with all of the layers of the high impedance section having substantially the same characteristic impedance to yield negligible reflection between the layers. The transducer further includes a load matching section comprised of a set of elastic layers for impedance matching between the high impedance section and the load material and, optionally, impedance matching layers between the high impedance section and the backing material for shaping the transducer frequency response. For multiband operation, the high impedance section includes multiple piezoelectric layers covered with electrodes to form multiple electric ports that can further be combined by electric parallel, anti-parallel, serial, or anti-serial galvanic coupling to form electric ports with selected frequency transfer functions. Each electric port may be connected to separate electronic transceiver systems to obtain, through selection of drive signals on individual ports, selectable electric parallel, anti-parallel, serial, or anti-serial coupling of the ports in transmit mode, enabling transmission of ultrasound pulses with multi-band frequency components. In receive mode, signals from the individual electric ports can be combined after isolation amplifiers in a filter-combination unit to obtain composite electric ports with extreme wide-band transfer functions and multi-band transfer functions covering a range from a 1st to a 4th harmonic band.
Owner:ANGELSEN BJORN A J +1

Focusing rotary scanning photoacoustic ultrasonic blood vessel endoscope imaging device and focusing rotary scanning photoacoustic ultrasonic blood vessel endoscope imaging method

The invention belongs to the technical field of non-destructive testing and measuring, and discloses a focusing rotary scanning photoacoustic ultrasonic blood vessel endoscope imaging device and a focusing rotary scanning photoacoustic ultrasonic blood vessel endoscope imaging method. The device comprises a photoacoustic ultrasonic endoscope imaging probe, a rotating connecting part and a peripheral circuit part, wherein pulse laser generates 90-degree reflection at the light outlet end and is irradiated on the blood vessel wall after being gathered by a cylindrical surface light gathering lens, photoacoustic signals are generated, a sound-sensitive element receives the photoacoustic signals, the photoacoustic signals are collected and recorded after being converted, the synchronous working of a data collector and a pulse laser is realized, triggering signals generated by the pulse laser trigger an ultrasonic pulse emitting and receiving device to emit electric signals, the electric signals trigger the sound-sensitive element to emit ultrasonic signals, the ultrasonic signals are reflected after reaching the blood vessels, are received by sound-sensitive elements and are collected and recorded after being converted, a step motor drives the device for carrying out scanning to obtain the whole blood vessel fault data, and photoacoustic and ultrasonic images are obtained after the processing. The sound-sensitive elements are shared by ultrasonic and photoacoustic images, and the high-resolution and high-sensitivity blood vessel internal ultrasonic photoacoustic imaging can be realized.
Owner:SOUTH CHINA NORMAL UNIVERSITY

Method for determining the sound velocity in a basic material, particularly for measuring the thickness of a wall

Disclosed is a method for determining the sound velocity (Cb) in a basic material, in which an ultrasonic probe having a transmitting probe, a receiver transducer, and a forward member is used. The forward member is provided with a coupling surface that couples the probe to the basic material, and has a sound velocity (Cv). The transmitting probe and the receiver transducer are aligned in an oblique manner from each other and from the coupling surface such that a main transmission direction of the transmitting probe and a main receiving direction of the receiver transducer intersect below the coupling surface. The centers of the transmitting probe and the receiver transducer are located at a distance K from each other and are located at a distance Dv from the coupling surface. According to the inventive method, the transmitting probe generates an ultrasonic pulse which runs through the forward member into the basic material, where the ultrasonic pulse creates a creeping wave, a portion of which arrives at the receiver transducer. The shortest sound traveling time (Ttot) is measured and the sound velocity (Cb) within the basic material is determined via the path between the transmitting probe and the receiver transducer, which supplies the shortest total traveling time (Ttot).
Owner:AGFA NDT

Ultrasound imaging

ActiveCN101023376AImprove the contrast-to-noise ratioSuppression of linear scatter signalsUltrasonic/sonic/infrasonic diagnosticsInfrasonic diagnosticsSonificationCalcification
New methods of ultrasound imaging are presented that provide images with reduced reverberation noise and images of nonlinear scattering and propagation parameters of the object, and estimation of corrections for wave front aberrations produced by spatial variations in the ultrasound propagation velocity. The methods are based on processing of the received signal from transmitted dual frequency band ultrasound pulse complexes with overlapping high and low frequency pulses. The high frequency pulse is used for the image reconstruction and the low frequency pulse is used to manipulate the nonlinear scattering and/or propagation properties of the high frequency pulse. A 1st method uses the scattered signal from a single dual band pulse complex for filtering in the fast time (depth time) to provide a signal with suppression of reverberation noise and with 1st harmonic sensitivity and increased spatial resolution. In other methods two or more dual band pulse complexes are transmitted where the frequency and/or the phase and/or the amplitude of the low frequency pulse vary for each transmitted pulse complex. Through filtering in the pulse number coordinate and corrections of nonlinear propagation delays and optionally also amplitudes, a linear back scattering signal with suppressed pulse reverberation noise, a nonlinear back scattering signal, and quantitative nonlinear scattering and forward propagation parameters are extracted. The reverberation suppressed signals are further useful for estimation of corrections of wave front aberrations, and especially useful with broad transmit beams for multiple parallel receive beams. Approximate estimates of aberration corrections are given. The nonlinear signal is useful for imaging of differences in tissue properties, such as micro-calcifications, in-growth of fibrous tissue or foam cells, or micro gas bubbles as found with decompression or injected as ultrasound contrast agent.
Owner:比约恩・A・J・安杰尔森 +2
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products