Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

1856results about "Processing detected response signal" patented technology

Method and apparatus for determining the state of fouling/cleaning of membrane modules

The fouling state of a polymeric membrane within the high pressure housing of a spiral wound or a hollow fiber membrane module is determined. An ultra sonic transducer positioned with its emitting face in physical engagement with the outer surface of the housing is pulse energized by a pulser/receiver device. A membrane echo signal is detected by a receiver of the pulser/receiver device. A reference echo signal indicative of a fouled or an unfouled state of the membrane is compared to the echo signal to determine the membrane fouling state. The echo to reference comparing step can be based upon comparing amplitude domain signals, comparing time-domain signals, comparing combinations of amplitude domain and time-domain signals, and comparing transformations of amplitude domain and time-domain signals. A clean or a fouled reference echo can be provided from a clean or a fouled membrane and then stored for use during a liquid separation process, or a clean reference echo signal can be obtained on-line from a second transducer whose echo signal is derived from an area of the membrane known to remain relatively unfouled during the liquid separation process, or a clean or fouled reference echo signal can be provided for later use during a cleaning process or during a liquid separation process. Multiple transducers and a switching network can sample the fouling state at different positions within the membrane module.

Vibration and audio signal-based high-speed train track defect detecting method

The invention discloses a vibration and audio signal-based high-speed train track damage detecting method, belongs to the field of signal detection and processing as well as safety monitoring, and solves the problems of low detection speed and single detection method in the conventional train track damage detection. The method comprises the following steps: 1, acquiring vibration signals and audio signals of a train track through sensors arranged at train track detection points; 2, respectively extracting information characteristics included in the vibration signals and the audio signals; 3, respectively obtaining a nonlinear correlation curve of the vibration signals and a nonlinear correlation curve of the audio signals by using a nonlinear correlation analysis method; 4, respectively analyzing the information of the two nonlinear correlation curves obtained in the step 3 so as to respectively obtain minimum values of the two nonlinear correlation curves; and 5, carrying out data fusion on the two minimum values and corresponding information thereof so as to obtain a damage coefficient, and looking up a table to obtain the damage degree according to the coefficient. The method is suitable for detecting the damage on railway train tracks and monitoring the safety operation of trains.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products