Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

155 results about "Flow instability" patented technology

Applied Flow Instability. Flow instability is formally a linear concept, applicable only for infinitesimal perturbations to a steady or periodic solution to the governing equations. Nevertheless, it can be applied to turbulent flows with surprising success, yielding useful information about how to control such flows.

Microfluidic electrophoresis chip having flow-retarding structure

InactiveUS20060042948A1Reducing electrokinetic flow instabilityHigh hydraulic resistanceSludge treatmentVolume/mass flow measurementCapillary electrophoresisElectrophoresis
A capillary electrophoresis device and separation protocol uses a hydraulic resistance-providing structure (HRPS) in the main separation channel to separate the divide the main separate channel into an upstream portion and a downstream portion. The HRPS may take the form of a porous plug, or a solid plug provided with at least one shallow channel. A sample separates and migrates through the porous structure or the shallow channel, upon application of a voltage difference between the upstream and downstream sides. Among other things, the HRPS helps reduce electrokinetic flow in the presence of conductivity gradients and facilitates robust, high-gradient on-chip field amplified sample stacking. The HRPS also enables the use of a pressure-injection scheme for the introduction of a high conductivity gradient in a separation channel and thereby avoids flow instabilities associated with high conductivity gradient electrokinetics. The approach also allows for the suppression of electroosmotic flow (EOF) and benefits from the associated minimization of sample dispersion caused by non-uniform EOF mobilities. An injection procedure employing a single pressure-flow high-conductivity buffer injection step followed by standard high voltage control of electrophoretic fluxes of sample, may be employed.
Owner:THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIV

Skimmer for Concentrating an Aerosol

A skimmer device for concentrating an aerosol from a flowing gas stream, having an inlet with inlet aperture and inlet raceway, an outlet with virtual impact void and collector channel, and bulk flow divertors symmetrically disposed on either side of the long axis of flow, further characterized in that the downstream walls of the bulk flow divertors are concavedly curved and reverse the direction of bulk flow. In section, the four channels or passages of the “skimmer” thus form a “crossed tee” with concavedly contoured lateral arms curving back around. The lateral flow channels are for diverting the bulk flow into exhaust chimney spaces, and the chimney spaces are positioned proximate to the inlet element and anterior to the collection channel. In operation, the bulk flow streamlines are thereby folded more than 90 degrees away from the long axis of flow on the laterally disposed concave walls of the bulk flow channels. While counterintuitive, this was found using computational fluid dynamics (CFD) and experimentation to dramatically reduce wall separation and related instabilities and to improve particle recoveries. Large two-dimensional arrays of closely stacked inlet and skimmer elements are thus achieved by fitting the chimneys into spaces between parallel inlet elements. The interlinked problems of flow instability, manufacturability of arrays, and scale-up of chimney cross-sectional area to equalize pressure differentials in the bulk flow diverter exhaust ducts, particularly in two-dimensional arrays at high throughput, are uniquely solved with this geometry.
Owner:ENERTECHNIX

Manifold insert having distribution guides and fuel cell stack comprising the same

ActiveUS20120122008A1Reduces output voltage deviationPrevents local flow instabilityElectric devicesFuel cells groupingFuel cellsHydrogen
The present invention provides a manifold insert having a plurality of distribution guides which reduce output voltage deviation due to flow instability between unit cells and prevent local flow instability of electrodes by stably distributing the flow of fluid (such as air, hydrogen, and coolant) supplied to a fuel cell stack, thereby maintaining a stable performance of the unit cells, and a fuel cell stack comprising the same. In particular, manifold insert having distribution guides is provided, the manifold insert being configured to form a flow field from an inlet port of fluid to an outlet port connected to a fuel cell stack, the manifold insert including: a plurality of distribution guides for dividing the flow field from the inlet port to the outlet port such that the fuel cell stack is divided into a plurality of regions according to the distance from the inlet port, wherein the distribution guides have surfaces that are at least partially curved such that the flow of the fluid from the inlet port to the outlet port is changed by the curved surfaces and form a plurality of guide flow fields for guiding the fluid to the divided regions of the fuel cell stack such that the fluid is supplied to the divided regions of the fuel cell stack along the plurality of guide flow fields at different flow rates.
Owner:HYUNDAI MOTOR CO LTD +1

Preprocessing system for near-infrared online detection and application thereof

The invention provides a preprocessing system for near-infrared online detection, which is composed of a filter, a back-up filter, a variable-frequency centrifugal pump, a temperature control device, a buffering device, a flowmeter, a near-infrared spectrum acquisition device, an automatic sampling device, a liquid inlet and a liquid outlet. The preprocessing system provided by the invention can run automatically, continuously and reliably, and can be switched for use under the condition of not affecting the function of the whole system, therefore, the automatic positive and negative washing can be realized simultaneously, the samples of acquired spectrums can be acquired in a targeted mode, and the cleaning and beauty of the whole system can be maintained. By using the preprocessing system provided by the invention, the problem of difficulty in detection caused by more insoluble solid particles, unstable flow, easily-produced bubbles and large temperature fluctuation in the process of near-infrared online detection is solved, so that the acquired near-infrared spectrum is stable, reliable, and good in repeatability, thereby improving the accuracy of results of near-infrared on-line detection, promoting the development and application of the near-infrared spectral analysis technology in pharmaceutical production processes, and then truly realizing on-line quality control.
Owner:ZHEJIANG UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products