Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2525 results about "Cell voltage" patented technology

""Cell voltage"" usually refers to nonequilibrium conditions, that is when current is flowing through the cell (although this convention is not always followed). The ""cell voltage"" differs from the electromotive force (emf) (or open-circuit voltage (ocv)) of the cell by the amount of the overvoltage.

Implantable devices using rechargeable zero-volt technology lithium-ion batteries

InactiveUS7184836B1Assures safe and reliable operation of systemFirmly connectedElectrotherapyLoad circuitLow voltage
An implantable medical device, such as an implantable pulse generator (IPG) used with a spinal cord stimulation (SCS) system, includes a rechargeable lithium-ion battery having an anode electrode with a substrate made substantially from titanium. Such battery construction allows the rechargeable battery to be discharged down to zero volts without damage to the battery. The implantable medical device includes battery charging and protection circuitry that controls the charging of the battery so as to assure its reliable and safe operation. A multi-rate charge algorithm is employed that minimizes charging time while ensuring the battery cell is safely charged. Fast charging occurs at safer lower battery voltages (e.g., battery voltage above about 2.5 V), and slower charging occurs when the battery nears full charge higher battery voltages (e.g., above about 4.0 V). When potentially less-than-safe very low voltages are encountered (e.g., less than 2.5 V), then very slow (trickle) charging occurs to bring the battery voltage back up to the safer voltage levels where more rapid charging can safely occur. The battery charging and protection circuitry also continuously monitors the battery voltage and current. If the battery operates outside of a predetermined range of voltage or current, the battery protection circuitry disconnects the battery from the particular fault, i.e. charging circuitry or load circuits.
Owner:QUALLION +1

Mobile terminal, direct charging power adapter and charging method

The invention discloses a mobile terminal, a direct charging power adapter and a charging method. The method comprises the steps: the mobile terminal detects the short circuit condition of two communication pins in the USB interface of the mobile terminal, when the mobile terminal is inserted by an external equipment which is the power adapter, the mobile terminal can automatically identify the type of the external connected charging equipment by adopting the power adapter communication; at the same time, a special express charge mode is designed for the direct charging power adapter, when a battery of the mobile terminal is concentratedly charged, the battery is directly charged with heavy current by using the charging voltage outputted by the direct charging power adapter, and the volt value of the charging voltage can be dynamically adjusted according to the variation of the voltage of the battery. According to the above, on the premise that the safety of the battery charge is guaranteed, the great increase of the battery charging speed is realized, the required time of single charging of the mobile terminal is shortened, the influences on daily use of user caused by the repeatedly and long time charging of the mobile terminal is reduced, and the user satisfaction is greatly improved.
Owner:QINGDAO HISENSE MOBILE COMM TECH CO LTD

Implantable devices using rechargeable zero-volt technology lithium-ion batteries

InactiveUS7295878B1Assures safe and reliable operation of systemFirmly connectedImplantable neurostimulatorsLoad circuitLow voltage
An implantable medical device, such as an implantable pulse generator (IPG) used with a spinal cord stimulation (SCS) system, includes a rechargeable lithium-ion battery having an anode electrode with a substrate made substantially from titanium. Such battery construction allows the rechargeable battery to be discharged down to zero volts without damage to the battery. The implantable medical device includes battery charging and protection circuitry that controls the charging of the battery so as to assure its reliable and safe operation. A multi-rate charge algorithm is employed that minimizes charging time while ensuring the battery cell is safely charged. Slow charging occurs at lower battery voltages (e.g., battery voltage below about 2.5 V), and fast charging occurs when the battery voltage has reached a safe level (e.g., above about 2.5 V). When potentially less-than-safe very low voltages are encountered (e.g., less than 2.5 V), then very slow (trickle) charging occurs to bring the battery voltage back up to the safer voltage levels where more rapid charging can safely occur. The battery charging and protection circuitry also continuously monitors the battery voltage and current. If the battery operates outside of a predetermined range of voltage or current, the battery protection circuitry disconnects the battery from the particular fault, i.e. charging circuitry or load circuits.
Owner:QUALLION +1

Method and apparatus for using residual energy in a battery-powered computer

Methods and apparatus are described for providing a time-based warning indicating that the energy capacity of a primary energy source of a battery-powered computer has discharged to a low level, and using residual energy of the primary energy source to perform at least one pre-cutoff function. The time-based warning ensures that the warning is provided in a timely manner by overcoming problems caused by analog to digital converter voltage measurement accuracy limitations and flat battery operating voltage versus discharge curves. The primary energy source can be a rechargeable battery, which can also be the sole energy source for the computer. The battery provides power to operate the computer until the battery voltage discharges to the cutoff voltage. The methods and apparatus provide advantages because they reserve the residual energy in the battery to perform at least one pre-cutoff function within a first duration before the battery discharges to the cutoff voltage. For example, the residual energy can be used to retain data stored in the computer between opportunities to charge the battery. Some embodiments of the invention include hardware resources coupled with the processor to lock out power and application activation when the rechargeable battery has discharged to a predetermined hardware lockout voltage. The value of the hardware lockout voltage can be based on the battery retaining a residual energy sufficient for performing the corresponding pre-cutoff function within an amount of time that is expected to enable the user to perform the function.
Owner:QUALCOMM INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products