Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

505results about "Optical mode multiplex systems" patented technology

System and method for improving the efficiency of routers on the Internet and/or cellular networks and/or other networks and alleviating bottlenecks and overloads on the network

The biggest bottleneck in the Internet today is caused by the slow speed of routers, compared to the speeds that are achieved by optic fibers with DWDM (Dense Wave Division Multiplexing). Packet switching or something similar to it is needed not just for better utilization of the lines, but also because it is superior to circuit switching in many ways, such as better scalability as the Internet grows, better handling of traffic congestions, and better routing flexibility. But optical routers are currently unable to do packet switching except by translating the data to electronic data and then back, which is very inefficient. The present invention solves this problem by optically marking and detecting the packet headers or parts of them, translating at most only the headers or parts of them to electronics for making packet switching decisions, and keeping the rest of the packets in optical delay lines, and solving response-time problems in the router, so that the crude optical switches can execute the packet switching decisions at fast bit rates. This solution has very high scalability and becomes even more efficient when physical addresses are used. Another optimization described in this invention is improving routing efficiency and bandwidth utilization by grouping together identical data packets from the same source going to the same general area with a multiple list of targets connected to each copy of the data and sent together to the general target area. These grouped packets are then preferably broken down into smaller groups by the routers in the general target area and finally broken down to individual data packets for delivering to the final actual destinations. This optimization works best with Physical addresses, and can be very useful for example for optimizing the access to very popular sites such as for example Yahoo or CNN, and can be used also for example for more efficiently transferring streaming data, such as for example from Internet radio stations, or Internet TV stations which will probably exist in the next years. Another important optimization is a new architecture and principles for routing based on physical geographical IP addresses (such as for example based on GPS), in a way much more efficient than has been previously discussed in the literature that suggested using physical (geographical) addresses. This is preferably based on a hierarchy similar to a hierarchical road system, so that preferably the MAIN routers (and/or intermediary-level routers) are preferably also connected directly and preferably with high-bandwidth as peers between each other, without having to go through lower-level routers in order to reach their peers, so that once a higher-level router (and especially if it's one of the MAIN routers) decides to forward a packet (or a group of packets) to a higher-level peer, preferably the packets don't have to go through lower level routers. However, conversion from the current architecture to the new one can be done very easy, as shown in the description below.
Owner:BARHON MAYER BATYA

Optical CDMA system using sub-band coding

An optical fiber communications system using spread spectrum code division multiple access techniques to achieve better bandwidth utilization. A transmitting user in the system encodes the optical signal using a first coding mask, and a receiving user decodes the received signal using two decoding masks, all of the masks having lengths N. The first mask is divided into two sections of lengths N/2 each, one of the sections defining a first sub-code of length N/2, while the other section blocks light. Each of the second and third masks is also divided into two sections, which correspond to the two sections of the first mask. The section of the second mask corresponding to the coded section of the first mask has a second code that is identical to the first code, and the section of the second mask corresponding to the blocked section of the first mask is also blocked. The section of the third mask corresponding to coded section of the first mask has a third code that is complementary to the first code, and the section of the third mask corresponding to the blocked section of the first mask is also blocked. Some users on the system have masks in which the first of the two sections are blocked and the second of the two sections are coded, while other users have masks in which the second of the two sections are blocked and the first of the two sections are coded. The first codes used to code the encoding masks are selected from a set of unipolar codes that are derived from a set of balanced bipolar orthogonal codes.
Owner:CODESTREAM TECH CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products