Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

179 results about "Magnetic resonance spectroscopic" patented technology

Systems and methods for automated voxelation of regions of interest for magnetic resonance spectroscopy

A system and method for automating an appropriate voxel prescription in a uniquely definable region of interest (ROI) in a tissue of a patient is provided, such as for purpose of conducting magnetic resonance spectroscopy (MRS) in the ROI. The dimensions and coordinates of a single three dimensional rectilinear volume (voxel) within a single region of interest (ROI) are automatically identified. This is done, in some embodiments by: (1) applying statistically identified ROI search areas within a field of view (FOV); (2) image processing an MRI image to smooth the background and enhance a particular structure useful to define the ROI; (3) identifying a population of pixels that define the particular structure; (4) performing a statistical analysis of the pixel population to fit a 2D model such as an ellipsoid to the population and subsequently fit a rectilinear shape within the model; (5) repetiting elements (1) through (4) using multiple images that encompass the 3D ROI to create a 3D rectilinear shape; (6) a repetition of elements (1) through (5) for multiple ROIs with a common FOV. A manual interface may also be provided, allowing for override to replace by manual prescription, assistance to identify structures (e.g. clicking on disc levels), or modifying the automated voxel (e.g. modify location, shape, or one or more dimensions).
Owner:ACLARION INC

MR spectroscopy system and method for diagnosing painful and non-painful intervertebral discs

An MR Spectroscopy (MRS) system and approach is provided for diagnosing painful and non-painful discs in chronic, severe low back pain patients (DDD-MRS). A DDD-MRS pulse sequence generates and acquires DDD-MRS spectra within intervertebral disc nuclei for later signal processing & diagnostic analysis. An interfacing DDD-MRS signal processor receives output signals of the DDD-MRS spectra acquired and is configured to optimize signal-to-noise ratio (SNR) by an automated system that selectively conducts optimal channel selection, phase and frequency correction, and frame editing as appropriate for a given acquisition series. A diagnostic processor calculates a diagnostic value for the disc based upon a weighted factor set of criteria that uses MRS data extracted from the acquired and processed MRS spectra along regions associated with multiple chemicals that have been correlated to painful vs. non-painful discs. A diagnostic display provides a scaled, color coded legend and indication of results for each disc analyzed as an overlay onto a mid-sagittal T2-weighted MRI image of the lumbar spine for the patient being diagnosed. Clinical application of the embodiments provides a non-invasive, objective, pain-free, reliable approach for diagnosing painful vs. non-painful discs by simply extending and enhancing the utility of otherwise standard MRI exams of the lumbar spine.
Owner:ACLARION INC +1

Control apparatus for controlling a therapeutic apparatus

A control apparatus (106) for controlling a therapeutic apparatus (100), wherein the control apparatus comprises: —an ultrasound control interface (110) for controlling a therapeutic ultrasound system (102), —a magnetic resonance control interface (112) for controlling a magnetic resonance apparatus (104) adapted for acquiring magnetic resonance imaging data from a subject and for acquiring magnetic resonance spectroscopy data from a subject (244), —an image processing module (124, 126, 128) for generating at least one magnetic resonance imaging image (500) from the magnetic resonance imaging data and for generating at least one magnetic resonance spectroscopy map (502, 514, 516, 518, 520) from the magnetic resonance spectroscopy data, —a planning module (120) adapted for receiving the magnetic resonance imaging image and the magnetic resonance spectroscopy map and for outputting planning data (732), —a control module (122) adapted for controlling the therapeutic ultrasound system using the ultrasound control apparatus using the planning data, wherein the control module is further adapted for controlling the acquisition of the acquiring magnetic resonance imaging data and magnetic resonance spectroscopy data using the magnetic resonance control interface.
Owner:KONINKLIJKE PHILIPS ELECTRONICS NV

Magnetic resonance spectroscopy with real-time correction of motion and frequency drift, and real-time shimming

This invention relates to localized magnetic resonance spectroscopy (MRS) and to magnetic resonance spectroscopic imaging (MRSI) of the proton NMR signal, specifically to a magnetic resonance spectroscopy (MRS) method to measure a single volume of interest and to a magnetic resonance spectroscopic imaging method with at least one spectral dimension and up to three spatial dimensions. MRS and MRSI are sensitive to movement of the object to be imaged and to frequency drifts during the scan that may arise from scanner instability, field drift, respiration, and shim coil heating due to gradient switching. Inter-scan and intra-scan movement leads to line broadening and changes in spectral pattern secondary to changes in partial volume effects in localized MRS. In MRSI movement leads to ghosting artifacts across the entire spectroscopic image. For both MRS an MRSI movement changes the magnetic field inhomogeneity, which requires dynamic reshimming. Frequency drifts in MRS and MRSI degrade water suppression, prevent coherent signal averaging over the time course of the scan and interfere with gradient encoding, thus leading to a loss in localization. It is desirable to measure object movement and frequency drift and to correct object motion and frequency drift without interfering with the MRS and MRSI data acquisition.
Owner:POSSE STEFAN

Simultaneous excitation and acquisition in magnetic resonance

A method for magnetic resonance spectroscopy (=MRS) or magnetic resonance imaging (=MRI) in which an NMR time-domain signal is created by an RF excitation pulse applied to an object in the presence of an applied magnetic field that may depend on spatial position and/or time, the time-domain signal being generated by an excited transverse nuclear magnetisation precessing about the applied magnetic field, whereby the RF excitation pulse is adapted to cover a whole range of NMR frequencies of interest present in the object, and time-domain signal acquisition takes place during, or during and after the application of the RF excitation pulse, is characterized in that spectral or image data are reconstructed by a matrix product of a reconstruction matrix and a vector of time-domain signal points, the reconstruction matrix being an inversion of an encoding matrix A whose elements are calculated using the formula:
Anα=m=0n-1PmΦ(n,m,α),
wherein n is the running number of a time-domain signal point, α is the running number of a discrete image or spectral element, Pm is the m-th discrete element of the RF excitation pulse in the time-domain, and Φ(n,m,α) is the phase accrued by the transverse nuclear magnetisation related to the discrete image or spectral element a in the time between the discrete RF excitation pulse element Pm and the time-domain signal point n under the influence of the applied magnetic field. An improved method for reconstructing spectral or image data from time-domain signal acquired as describe above is thereby provided which can be used more versatilely than conventional Fourier transform.
Owner:BRUKER BIOSPIN MRI

Systems and methods for automated voxelation of regions of interest for magnetic resonance spectroscopy

A system and method for automating an appropriate voxel prescription in a uniquely definable region of interest (ROI) in a tissue of a patient is provided, such as for purpose of conducting magnetic resonance spectroscopy (MRS) in the ROI. The dimensions and coordinates of a single three dimensional rectilinear volume (voxel) within a single region of interest (ROI) are automatically identified. This is done, in some embodiments by: (1) applying statistically identified ROI search areas within a field of view (FOV); (2) image processing an MRI image to smooth the background and enhance a particular structure useful to define the ROI; (3) identifying a population of pixels that define the particular structure; (4) performing a statistical analysis of the pixel population to fit a 2D model such as an ellipsoid to the population and subsequently fit a rectilinear shape within the model; (5) repetiting elements (1) through (4) using multiple images that encompass the 3D ROI to create a 3D rectilinear shape; (6) a repetition of elements (1) through (5) for multiple ROIs with a common FOV. A manual interface may also be provided, allowing for override to replace by manual prescription, assistance to identify structures (e.g. clicking on disc levels), or modifying the automated voxel (e.g. modify location, shape, or one or more dimensions).
Owner:ACLARION INC

A magnetic resonance spectrum reconstruction method based on deep learning

The invention discloses a magnetic resonance spectrum reconstruction method based on deep learning, and relates to a magnetic resonance spectrum reconstruction method. The method includes: Generatinga time domain signal of the magnetic resonance spectrum by utilizing an exponential function; Establishing a training set of the under-sampling time domain signals and the full-sampling spectrum; Designing a convolutional neural network in the data verification convolutional neural network structure; Designing a bottleneck layer in the data verification convolutional neural network structure; Designing a data verification layer in the data verification convolutional neural network structure; Designing a feedback function in a data verification convolutional neural network structure; Establishing a data verification convolutional neural network structure as a spectrum reconstruction model; Training network optimization parameters; Reconstructing an under-sampling magnetic resonance time domain signal of the target; When undersampling operation is carried out in the time-frequency domain, utilizing the strong fitting capability of the convolutional neural network and the data verification capability of the data verification layer to complete rapid and high-quality reconstruction of the undersampling magnetic resonance spectrum signal.
Owner:XIAMEN UNIV

Exponential signal denoising method achieved by means of prior information

The invention provides an exponential signal denoising method achieved by means of prior information and relates to a denoising method for exponential signals.The prior exponential signals form a Hankel matrix according to a set sequence, the Hankel matrix is subjected to singular value decomposition, and a prior signal space and a prior singular value are obtained; then a Hankel matrix with the same size as the former Hankel matrix is established for the target exponential signals, and the matrix of the target signals is decomposed through the prior information space; after a weighted threshold is obtained from the prior singular value, a Hankel matrix of the denoised target signals is obtained from the singular value of the target exponential signals according to the weighted threshold; then the Hankel matrix of the target signals is solved, and finally the denoised signals are obtained.Through the prior information of the reference signals, the speed is high, the effect is good, and operation is easy.Denoising of a magnetic resonance spectrum can be achieved for signals with exponential features such as time domain signals of the magnetic resonance spectrum through the method, and the purposes of shortening the sampling time and increasing the signal to noise ratio of the spectrum are achieved.
Owner:XIAMEN UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products