Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

298 results about "Histopathology" patented technology

Histopathology (compound of three Greek words: ἱστός histos "tissue", πάθος pathos "suffering", and -λογία -logia "study of") refers to the microscopic examination of tissue in order to study the manifestations of disease. Specifically, in clinical medicine, histopathology refers to the examination of a biopsy or surgical specimen by a pathologist, after the specimen has been processed and histological sections have been placed onto glass slides. In contrast, cytopathology examines free cells or tissue micro-fragments (as "cell blocks").

Systems and methods for automated screening and prognosis of cancer from whole-slide biopsy images

InactiveUS20140233826A1Accurate and unambiguous measureReduce dependenceImage enhancementMedical data miningFeature setProstate cancer
The invention provides systems and methods for detection, grading, scoring and tele-screening of cancerous lesions. A complete scheme for automated quantitative analysis and assessment of human and animal tissue images of several types of cancers is presented. Various aspects of the invention are directed to the detection, grading, prediction and staging of prostate cancer on serial sections/slides of prostate core images, or biopsy images. Accordingly, the invention includes a variety of sub-systems, which could be used separately or in conjunction to automatically grade cancerous regions. Each system utilizes a different approach with a different feature set. For instance, in the quantitative analysis, textural-based and morphology-based features may be extracted at image- and (or) object-levels from regions of interest. Additionally, the invention provides sub-systems and methods for accurate detection and mapping of disease in whole slide digitized images by extracting new features through integration of one or more of the above-mentioned classification systems. The invention also addresses the modeling, qualitative analysis and assessment of 3-D histopathology images which assist pathologists in visualization, evaluation and diagnosis of diseased tissue. Moreover, the invention includes systems and methods for the development of a tele-screening system in which the proposed computer-aided diagnosis (CAD) systems. In some embodiments, novel methods for image analysis (including edge detection, color mapping characterization and others) are provided for use prior to feature extraction in the proposed CAD systems.
Owner:BOARD OF RGT THE UNIV OF TEXAS SYST

Method for probabilistically classifying tissue in vitro and in vivo using fluorescence spectroscopy

Fluorescence spectral data acquired from tissues in vivo or in vitro is processed in accordance with a multivariate statistical method to achieve the ability to probabilistically classify tissue in a diagnostically useful manner, such as by histopathological classification. The apparatus includes a controllable illumination device for emitting electromagnetic radiation selected to cause tissue to produce a fluorescence intensity spectrum. Also included are an optical system for applying the plurality of radiation wavelengths to a tissue sample, and a fluorescence intensity spectrum detecting device for detecting an intensity of fluorescence spectra emitted by the sample as a result of illumination by the controllable illumination device. The system also include a data processor, connected to the detecting device, for analyzing detected fluorescence spectra to calculate a probability that the sample belongs in a particular classification. The data processor analyzes the detected fluorescence spectra using a multivariate statistical method. The five primary steps involved in the multivariate statistical method are (i) preprocessing of spectral data from each patient to account for inter-patient variation, (ii) partitioning of the preprocessed spectral data from all patients into calibration and prediction sets, (iii) dimension reduction of the preprocessed spectra in the calibration set using principal component analysis, (iv) selection of the diagnostically most useful principal components using a two-sided unpaired student's t-test and (v) development of an optimal classification scheme based on logistic discrimination using the diagnostically useful principal component scores of the calibration set as inputs.
Owner:BOARD OF RGT THE UNIV OF TEXAS SYST

Bioabsorbable polymeric implants and a method of using the same to create occlusions

A new embolic agent, bioabsorbable polymeric material (BPM) is incorporated to a Guglielmi detachable coil (GDC) to improve long-term anatomic results in the endovascular treatment of intracranial aneurysms. The embolic agent, comprised at least in part of at least one biocompatible and bioabsorbable polymer and growth factors, is carried by hybrid bioactive coils and is used to accelerate histopathologic transformation of unorganized clot into fibrous connective tissue in experimental aneurysms. An endovascular cellular manipulation and inflammatory response are elicited from implantation in a vascular compartment or any intraluminal location. Thrombogenicity of the biocompatible and bioabsorbable polymer is controlled by the composition of the polymer. The coil further is comprised at least in part of a growth factor or more particularly a vascular endothelial growth factor, a basic fibroblast growth factor or other growth factors. The biocompatible and bioabsorbable polymer is in the illustrated embodiment at least one polymer selected from the group consisting of polyglycolic acid, poly~glycolic acid/poly-L-lactic acid copolymers, polycaprolactive, polyhydroxybutyrate/hydroxyvalerate copolymers, poly-L-lactide. Polydioxanone, polycarbonates, and polyanhydrides.
Owner:RGT UNIV OF CALIFORNIA

Process for preserving three dimensional orientation to allow registering histopathological diagnoses of tissue to images of that tissue

A process for maintaining 3 dimensional orientation between a tissue specimen and images of the area of investigation, to register histopathologic diagnoses of multiple locations within the specimen with corresponding locations on the surface of said area of investigation, by marking at least two fiduciary lines on the area of investigation; acquiring a fiduciary image of the tissue with the fiduciary lines; excising the tissue to form a tissue specimen; inserting at least two parallel needles through said specimen; acquiring a specimen image of the specimen with inserted needles over an alignment grid; fixing the specimen by immersing the specimen; acquiring a fixed image of the fixed specimen with the inserted needles over the alignment grid; forming a paraffin mold containing the fixed specimen and inserted needles; injecting different colored inks through the needles while withdrawing them from the fixed specimen, so that different colored needle tracks are formed in the specimen; sectioning the specimen to create specimen blocks having different colored needle tracks; further sectioning the specimen to cut the specimen blocks into specimen slices having different colored ink dots corresponding to the different colored needle tracks; forming pathology images from the specimen slices; performing histopathology analyses on the pathology images; annotating the pathology images with histopathology annotations; aligning the annotations with the fixed image using the colored ink dots; determining shrinkage between the fixed image and the annotations by using the grid to compare the distance between the needles in the fixed image with the distance between the ink dots on the specimen slices; registering the fixed image to the specimen image to account for shrinkage caused by fixation, using locations of the needles in both of the images as landmarks; registering the specimen image to the fiduciary image to account for tissue translation and soft tissue movement using the fiduciary lines and geographical features of said area of investigation as landmarks; registering the fiduciary image to the reference image to account for tissue translation and soft tissue movement using said geographical features; whereby annotations of histopathologic diagnoses are provided for multiple locations on or under the surface of the specimen that are registered to images of the specimen.
Owner:CADES SCHUTTE A LIMITED LIABILITY LAW PARTNERSHIP

Digital histopathology and microdissection

A computer implemented method of generating at least one shape of a region of interest in a digital image is provided. The method includes obtaining, by an image processing engine, access to a digital tissue image of a biological sample; tiling, by the image processing engine, the digital tissue image into a collection of image patches; identifying, by the image processing engine, a set of target tissue patches from the collection of image patches as a function of pixel content within the collection of image patches; assigning, by the image processing engine, each target tissue patch of the set of target tissue patches an initial class probability score indicating a probability that the target tissue patch falls within a class of interest, the initial class probability score generated by a trained classifier executed on each target tissue patch; generating, by the image processing engine, a first set of tissue region seed patches by identifying target tissue patches having initial class probability scores that satisfy a first seed region criteria, the first set of tissue region seed patches comprising a subset of the set of target tissue patches; generating, by the image processing engine, a second set of tissue region seed patches by identifying target tissue patches having initial class probability scores that satisfy a second seed region criteria, the second set of tissue region seed patches comprising a subset of the set of target tissue patches; calculating, by the image processing engine, a region of interest score for each patch in the second set of tissue region seed patches as a function of initial class probability scores of neighboring patches of the second set of tissue region seed patches and a distance to patches within the first set of issue region seed patches; and generating, by the image processing engine, one or more region of interest shapes by grouping neighboring patches based on their region of interest scores.
Owner:NANTOMICS LLC

System and methods of amplitude-modulation frequency-modulation (AM-FM) demodulation for image and video processing

Image and video processing using multi-scale amplitude-modulation frequency-modulation (“AM-FM”) demodulation where a multi-scale filterbank with bandpass filters that correspond to each scale are used to calculate estimates for instantaneous amplitude, instantaneous phase, and instantaneous frequency. The image and video are reconstructed using the instantaneous amplitude and instantaneous frequency estimates and variable-spacing local linear phase and multi-scale least square reconstruction techniques. AM-FM demodulation is applicable in imaging modalities such as electron microscopy, spectral and hyperspectral devices, ultrasound, magnetic resonance imaging (“MRI”), positron emission tomography (“PET”), histology, color and monochrome images, molecular imaging, radiographs (“X-rays”), computer tomography (“CT”), and others. Specific applications include fingerprint identification, detection and diagnosis of retinal disease, malignant cancer tumors, cardiac image segmentation, atherosclerosis characterization, brain function, histopathology specimen classification, characterization of anatomical structure such as carotid artery walls and plaques or cardiac motion and as the basis for computer-aided diagnosis to name a few.
Owner:STC UNM

Bioabsorbable polymeric implants and a method of using the same to create occlusions

InactiveUS20060058835A1Peptide/protein ingredientsDilatorsVascular compartmentPoly-L-lactide
A new embolic agent, bioabsorbable polymeric material (BPM) is incorporated to a Guglielmi detachable coil (GDC) to improve long-term anatomic results in the endovascular treatment of intracranial aneurysms. The embolic agent, comprised at least in part of at least one biocompatible and bioabsorbable polymer and growth factors, is carried by hybrid bioactive coils and is used to accelerate histopathologic transformation of unorganized clot into fibrous connective tissue in experimental aneurysms. An endovascular cellular manipulation and inflammatory response are elicited from implantation in a vascular compartment or any intraluminal location. Thrombogenicity of the biocompatible and bioabsorbable polymer is controlled by the composition of the polymer. The coil further is comprised at least in part of a growth factor or more particularly a vascular endothelial growth factor, a basic fibroblast growth factor or other growth factors. The biocompatible and bioabsorbable polymer is in the illustrated embodiment at least one polymer selected from the group consisting of polyglycolic acid, poly˜glycolic acid / poly-L-lactic acid copolymers, polycaprolactive, polyhydroxybutyrate / hydroxyvalerate copolymers, poly-L-lactide. Polydioxanone, polycarbonates, and polyanhydrides.
Owner:RGT UNIV OF CALIFORNIA
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products