Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

510results about How to "Maximize throughput" patented technology

Apparatus and method for communicating voice and data between a customer premises and a central office

A method and apparatus are provided for communicating data across a communication link, in a manner that senses and dynamically adapts to the simultaneous transmission of voice information across the local loop. In accordance with one aspect of the invention, a method is provided for dynamically communicating data over a local loop using a modem comprising the steps of transmitting data in a full-band transmission state, sensing a band-limiting condition, and adjusting the transmission of data from the full-band transmission state to a bandlimited transmission state, in response to the sensing step. In accordance with the method, data may be transmitted by the modem across the local loop at the same time that voice information is communicated via telephone across the same local loop. A significant aspect of the present invention is the dynamic allocation of the data transmission bandwidth, whereby the invention senses a condition indicative of whether voice information is being communicated. If so, then the system shifts and / or narrows the data transmission bandwidth to allow for voice communications without interference from or with the data transmission. However, when no voice information is being communicated, the invention dynamically allocates the data transmission bandwidth to utilize at least a portion, if not all, of the frequency band otherwise used for communicating voice information.
Owner:PARADYNE CORP

Adaptive power control based on a rake receiver configuration in wideband CDMA cellular systems (WCDMA) and methods of operation

A WCDMA system includes a Base Station (BS) or forward transmitter and a pilot channel that transmits control signals between a Mobile Station (MS) and BS to reconfigure their transmitter/receiver according to the prediction of the channel power and channel power probability density function separated into three distinct equal probable regions. Data signals are encoded using a one-half Viterbi encoder and interleaved. The interleaved data bits are modulated using Quadrature Phase Shift Keying (QPSK) modulation. The QPSK data is multiplexed with the pilot channel and spread by an appropriate code in an OFDM transmitter modified by a long code. Output of the transmitter may be provided to two diverse antennas for reliable communications to the receiver. Data may be received at two diverse antennas. The outputs are provided to match filters coupled to a coherent rake receiver and a channel prediction system. The future attenuation of the channel coefficients and power are determined by the prediction system for several milliseconds. The power levels of each finger in the Rake receiver can be predicted and the strongest ones used in determining the optimum transmitter power or rate control for operating the system transmitters and receivers based on computing a long range power prediction of each finger of a rake receiver.
Owner:WISTRON CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products