Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

756results about How to "Improve data transfer rate" patented technology

Method for radio communication in a wireless local area network and transceiving device

Method for radio communication in a wireless local area network and transceiving device refers to wireless local area networks (WLAN) consisting of a multitude of transceiving devices of users (14, 15, 16 . . . N). Simultaneous scanning by their antenna beams in different directions by the transceiving devices (with the transceiving devices being in reception mode) and transmission of an omnidirectional signal in the form of calibration signal and data package by one of the transceiving devices of the network (with the transceiving device being in transmission mode), reception of the signal by the transceiving devices operating in reception mode and subsequent orientation of their antenna beams in the direction of signal source. The recognition and orientation is performed during the period of reception of the calibration signal. The Method increases the range of a WLAN, reduces the transmission time and improves quality and reliability of communication. Each transceiving device (1) includes at least one directional antenna (3) featuring a controllable directional pattern, switched-over by unit (4), reception / transmission mode switch (5), receiver (8), transmitter (10) and controller (11). Additionally a unit for signal detection (13) is incorporated in the device.
Owner:AIRGAIN INC

Method for radio communication in a wireless local area network wireless local area network and transceiving device

The invention refers to wireless local area networks (WLAN) consisting of a multitude of transceivers capable of establishing communication with one another (i.e. operating in a peer-to-peer mode) under the control of network coordinator (the so-called “ad hoc” networks). Implies the assignment of the role of the temporary coordinator to a transceiver from among the plurality of transceivers, switching-over other transceivers into the mode of a network client, orientation of antenna beam of a transceiver (switched-over into the client mode) equipped with a direction-agile antenna in the direction of the temporary coordinator of the network and transmission of information to an addressee by a client-transceiver of this network that has got the permission to transmit from the temporary coordinator. A WLAN comprises a multitude of transceivers, one of which serves as a temporary coordinator for said network and at least two of which have a direction-agile antenna and means for the operation of said antenna in the omnidirectional mode, in the directional scanning mode or in the stationary directional mode, an identification means responsive to transmission of a signal, including the transmission of a synchronization signal or identification signal intended for orienting said antenna in the direction of said signal being transmitted. The invention improves the quality and reliability of communication for WLAN users (including mobile users) thus increasing the data transfer rate.
Owner:AIRGAIN INC

Seismic Data Acquisition System and Method for Downhole Use

A method and system for conducting a seismic survey by lowering a string of intelligent clampable sensor pods with 3-C sensors into a borehole. The string of pods is serially interconnected by a cable having a conductor pair which provides both power and data connectivity. The uppermost sensor pod is connected to a downhole telemetry and control module. The cables and pods use connectors to allow assembly, customization, repair, and disassembly on site. Each pod has an upper and a lower connector, a processor, and memory which is coupled to both the upper and the lower connectors. Each pod is capable of simultaneous and independent serial communications at each connector with the memory. The telemetry and control module is designed to query the pods to determine the system configuration. The telemetry and control module then simultaneously triggers all pods to acquire data, the pods storing the collected data locally in the memory. After data collection, the controller simultaneously signals the pods to immediately transfer data serially from the local memory to the next higher adjacent pod and receive data, if any, from the lower adjacent pod, if any, storing the received data in memory. The first data transferred from each pod is that data collected by its local sensors. Subsequent data originates from lower pods and is simply passed up the string of pods to the telemetry and control module. In other words, the pods communicate in a bucket brigade fashion.
Owner:SENSORWISE

Method for the continuous real time tracking of the position of at least one mobile object as well as an associated device

In a method for the continuous real time tracking of the position of at least one mobile object in a defined multidimensional space, at least one mobile transmitter module is attached to at least one mobile object and the signals from the at least one module are received by a stationary receiving and signal processing network and then centrally processed. The signals emitted by each transmitter module are electromagnetic waves sent within a frequency band range using time division multiplexing techniques. Due to the fact that the frequency band is used as a single channel for the purpose of maximizing the accuracy with which a position is detected, and due also to the fact that the communication process between the transmitters and the receivers is based on the principle of pseudo-random time division multiplexing using burst transmissions of low cross correlation with non synchronized pseudo-random patterns, there is created a method for the continuous tracking of the position of one or more mobile objects at any time and in any place which is of very high positional resolution and has a temporal resolution of just a few milliseconds.
Owner:FRAUNHOFER GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG EV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products