Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

501 results about "Rate change" patented technology

Deep learning-based short-term traffic flow prediction method

The present invention discloses a deep learning method-based short-term traffic flow prediction method. The influence of the traffic flow rate change of the neighbor points of a prediction point, the time characteristic of the prediction point and the influence of the periodic characteristic of the prediction point on the traffic flow rate of the prediction point are considered simultaneously. According to the deep learning method-based short-term traffic flow prediction method of the invention, a convolutional neural network and a long and short-term memory (LSTM) recurrent neural network are combined to construct a Conv-LSTM deep neural network model; a two-way LSTM model is used to analyze the traffic flow historical data of the point and extract the periodic characteristic of the point; and a traffic flow trend and a periodic characteristic which are obtained through analysis are fused, so that the prediction of traffic flow can be realized. With the method of the invention adopted, the defect of the incapability of an existing method to make full use of time and space characteristics can be eliminated, the time and space characteristics of the traffic flow are fully extracted, and the periodic characteristic of the data of the traffic flow is fused with the time and space characteristics, and therefore, the accuracy of short-term traffic flow prediction results can be improved.
Owner:FUZHOU UNIV

System and method for controlling vehicular traffic flow

A system and method for controlling vehicular traffic flow is disclosed, which creates a communication system between vehicles that allows the vehicles to share their respective velocities and acceleration or deceleration rates. Thus, each vehicle within the system can respond immediately to any acceleration or deceleration rate changes of the surrounding vehicles (e.g., the vehicle directly in front, directly in back, and in the adjacent lane). Essentially, the system functions similar to a wireless vehicular train, with a queue of cars linked together by a stiff, wireless communications “chain”. Notably, the term “vehicle” is not limited only to land-based vehicles (e.g., motor vehicles), and the system can include airborne vehicles (e.g., multiple aircraft flying in close formation, military aircraft flying in drone formation, etc.). For example, a system for controlling vehicular traffic flow is disclosed, which includes in each vehicle of a plurality of vehicles, a wireless or infrared (IR) modem for inter-vehicular communications, a range finder for determining the distance and closing rate between vehicles, a processing unit for retrieving vehicular operational data (e.g., velocity, angular velocity, acceleration rate, deceleration rate, braking pressure, weight, pointing vector, etc.) and executing flow control system software instructions, and a vehicular flow control communications protocol that enables the communication of various flow control parameters between vehicles via the wireless or IR modem. Thus, each vehicle in the system “knows” what the surrounding vehicles are doing and can respond immediately to changes in the traffic flow. As such, the system minimizes the distribution of vehicles' velocities in the queue, and increases traffic throughput and safety as a result.
Owner:HONEYWELL INT INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products