Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

378 results about "Cardiac stimulation" patented technology

Stimulators Cardiac stimulation is carried out by delivering a pulse of electrical current through the electrode catheter from an external pacemaker (stimulator) to the cardiac surface. Such an electrical impulse depolarizes cardiac tissue near the pacing electrode, which then propagates through the heart.

System and method for automatically selecting electrode polarity during sensing and stimulation

An implantable multi-chamber cardiac stimulation device includes flexibly programmable electrode stimulation configurations, and is capable of precisely controlling the stimulation sequence between multiple sites. The stimulation device provides a plurality of connection ports that allow independent connection of each electrical lead associated with a particular stimulation site in the heart. Each connection port further provides a unique terminal for making electrical contact with only one electrode such that no two electrodes are required to be electrically coupled. Furthermore, each electrode, whether residing on a unipolar, bipolar or multipolar lead, may be selectively connected or disconnected through programmable switching circuitry that determines the electrode configurations to be used for sensing and for stimulating at each stimulation site. The stimulation device allows for the programmable selection of each electrode terminal connection to a relatively positive or negative battery potential. In this way, each electrode, when electrically connected, may be programmed to act as the cathode or as the anode during sensing or stimulation delivery. Thus, directionality of the depolarization wave may be controlled by programming the cathode and anode assignments of the stimulation electrodes.
Owner:PACESETTER INC

Method and apparatus for treatment of cardiac electromechanical dissociation

InactiveUS6298267B1Heart defibrillatorsCardiac arrest- pulseless electrical activityPulseless electrical activity
An apparatus and method for treating post-defibrillation electromechanical dissociation ("EMD") or pulseless electrical activity ("PEA"). A first embodiment comprises an implantable defibrillator with the capability of detecting and treating post defibrillation EMD. The stimulator / defibrillator has one or more leads with electrodes and at least one electrode for defibrillation. A sense circuit senses the electrical condition of the heart of the patient. A second sensor senses a parameter correlated to the state of blood flow. The cardiac stimulator / defibrillator detects and terminates ventricular tachyarrhythmia or fibrillation. If the stimulator / defibrillator detects the presence of electrical rhythm in the heart correlated, however, with inadequate blood flow to sustain life (EMD), the device provides an output to stimulate the heart to overcome EMD. The device may also be an external defibrillator. The method for treating the heart to restore blood flow where electromechanical dissociation occurs after termination of a ventricular tachyarrhythmia or ventricular fibrillation comprises identifying electromechanical disassociation after termination of a ventricular tachyarrhythmia or a fibrillation and inducing or re-inducing ventricular fibrillation and subsequently applying defibrillating shocks to terminate the fibrillation.
Owner:INTERMEDICS

System and method for tracking progression of left ventricular dysfunction using implantable cardiac stimulation device

InactiveUS6922587B2Accurate and reliable assessmentAlter heart contractilityHeart stimulatorsPost extrasystolic potentiationCardiac pacemaker electrode
The progression or regression of left ventricular dysfunction (LVD) is automatically evaluated by a pacemaker or other implantable cardiac stimulation device by tracking changes in the resting sinus rate of the patient in which the device is implanted. The resting sinus rate is detected by first determining whether the patient is in a state of profound rest, such as sleep, then measuring the actual sinus rate during profound rest. Profound rest may be detected by using an activity variance sensor. An increase in the profound rest sinus rate over a period of several months indicates progression of LVD; whereas a decrease indicates regression. Appropriate LVD diagnostic information is recorded for subsequent review by a physician. Based on the progression or regression of LVD, the physician may then modify LVD drug therapy administered to the patient or may adjust control parameters of the pacemaker, such as overdrive pacing control parameters or control parameters affecting heart contractility via post-extrasystolic potentiation. If a drug pump is implanted within the patient for automatically delivering LVD drug therapy, the pacemaker controls the drug pump in view of any detected progression or regression of LVD. The technique may also be used to verify the efficacy of LVD drug therapy administered to the patient, whether delivered via an implanted drug pump or otherwise. Processing may be primarily performed within the implanted device itself or with an external programmer in communication with the implanted device. Activity state-based LVD tracking techniques are also set forth.
Owner:PACESETTER INC

Method and apparatus for monitoring drug effects on cardiac electrical signals using an implantable cardiac stimulation device

An implantable cardiac stimulation device, such as a pacemaker or Implantable Cardioverter Defibrillator, is configured to automatically monitor the effects of antiarrhythmic drugs on cardiac electrical signals within a patient to verify the efficacy of the drugs taken. In one example, an analysis of patient cardiac electrical signals is performed by comparing the cardiac electrical signals with values representative of the effects of different classes of antiarrhythmic drugs. If the implantable device determines that the prescribed antiarrhythmic drugs have not been effective, a warning signal is generated. The warning signal is conveyed directly to the patient via a bedside monitor and to the patient's physician via remote connection to an external programmer device so that both are notified of the drug efficacy problems. Additionally, the implantable device may be configured to automatically adjust pacing and defibrillation control parameters in an attempt to compensate for any lack of efficacy in the drugs. For example, the aggressiveness of overdrive pacing may be increased. Alternatively, a drug pump is controlled to adjust the dosage of antiarrhythmic drugs if an initial dosage is found to be ineffective.
Owner:PACESETTER INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products