Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

35 results about "Left cardiac chamber" patented technology

Assisted teaching device for cardiac interventional operation

The invention discloses an assisted teaching device for a cardiac interventional operation. The device comprises a fixed device, a near infrared scanning device, an information processing device, a display device and an extracorporeal circulation device; the fixed device comprises a fixed bracket and a distance adjusting device; the near infrared scanning device comprises a tower crane, a near infrared laser emitter and a near infrared laser receiver, and a motor is arranged in the tower crane; the information processing device is used for processing and converting scanning information into aDSA image; the display device is used for displaying and simulating the DSA image; and the extracorporeal circulation device comprises an atrium dextrum catheter, a ventriculus dexter catheter, an atrium sinistrum catheter, a ventriculus sinister and a pump. By utilizing the imaging of the near infrared light, the DSA imaging can be simulated through computer software synthesis, thereby avoiding unnecessary radiation damage of an exerciser in the operation exercise process; and the human body cardiac blood flow process can be simulated by utilizing the extracorporeal circulation device, so that the operation exercise becomes more realistic, and the teaching quality and level are improved.
Owner:ZHONGSHAN HOSPITAL FUDAN UNIV

Ultrasonocardiogram myocardial abnormal motion mode analysis method and system, and storage medium

The invention provides an ultrasonic cardiogram myocardial abnormal motion mode analysis method and system and a storage medium and relates to the technical field of medical image processing. The method comprises the following steps of acquiring an echocardiogram sequence under a standard four-cavity cardiac tangent plane, wherein the length at least comprises one cardiac cycle; analyzing the leftventricular myocardial wall motion state of the echocardiogram in one cardiac cycle, and extracting multi-dimensional motion mode characteristics; and taking the echocardiogram sequence and the motion mode characteristics as the input of a myocardial abnormal motion mode identification model, and outputting the predicted confidence coefficient of the myocardial abnormal motion mode by using the myocardial abnormal motion mode identification model. According to the method, by extracting the motion mode characteristics in the echocardiogram sequence in one cardiac cycle, the time sequence information and the local motion information in the echocardiogram are fully mined, so accurate myocardial abnormal motion mode analysis can be automatically carried out according to the characteristics, and the prediction result is returned.
Owner:东软教育科技集团有限公司

Method, device, equipment and medium for intelligent classification of left ventricular magnetic resonance images

The present application discloses a method, device, device, and medium for intelligent classification of left ventricular magnetic resonance images. The method includes: acquiring a first word embedding vector corresponding to the first data of a detection object, a second word embedding vector corresponding to the second data, The numerical feature vector formed by splicing the third data; extracting the short-axis video and long-axis video in the heart magnetic resonance image of the detection object, and preprocessing to obtain the target video data; splicing and inputting the above three vectors into the first feature analysis model to obtain the second The first feature analysis result and the target video data are input into the second feature analysis model to obtain the second feature analysis result, and the third feature analysis result is obtained, and input to the third feature analysis model to obtain the classification probability of the left ventricle image of the detection object value. The method uses multi-sequence nuclear magnetic imaging data and clinical data to make classification predictions. The results are more reliable and accurate, and it does not require complicated post-processing procedures, and there is no cumulative error, which improves the robustness.
Owner:GENERAL HOSPITAL OF PLA +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products