Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

165results about "Combustion regulation systems" patented technology

Coal-fired power plant boiler system and denitration system operation collaborative optimization method

The invention provides a coal-fired power plant boiler system and denitration system operation collaborative optimization method. The method comprises the following steps: the operation of a powder preparation system is optimized and adjusted; the operation of a combustion system is optimized and adjusted; the operation of a denitration system is optimized and adjusted; the coal-fired boiler NOx emission control and the SCR denitration system ammonia escape control are coupled for optimization and adjustment; an optimal operation oxygen quantity range of a coal-fired boiler under different loads and an optimal openness range of a burnt wind nozzle in the optimal oxygen quantity operation range are determined by combining the reductive atmosphere distribution characteristics in a near wall area of a hearth water cooling wall and the denitration ammonia escape conditions; and an optimal denitration efficiency range of the denitration system under different loads is determined. The three system operation collaborative optimization methods, provided by the invention, see the boiler system and the denitration system as a large system; the mutual correlation and influence among the three systems are decoupled from the angle of the large system; and the most economical and safest operation mode of the large system is obtained through optimization.
Owner:GUODIAN NANJING ELECTRIC POWER TEST RES CO LTD

Furnace temperature control method and control equipment for open fire heating furnace

The invention discloses a furnace temperature control method for an open fire heating furnace, comprising the steps of monitoring the furnace temperature to obtain a furnace temperature feedback value; calculating the difference of a furnace temperature setting value and a furnace temperature feedback value according to the furnace temperature feedback value and the furnace temperature setting value as a deviation value DV1; calculating the difference of the furnace temperature setting value and the furnace temperature feedback value in a unit time, namely, the rake ratio of a furnace temperature change value is used as a deviation value DV2; obtaining the speed V of an open fire heating furnace unit from a speed regulator of the open fire heating furnace unit and obtaining a first multi-feed-forward output component FFV according to the unit speed V; obtaining a second multi-feed-forward output component FFT according to the difference of the furnace temperature setting value and the furnace temperature feedback value as a deviation value DV1; searching a PID (proportion integration differentiation) control parameter based on a fuzzy control rule according to the deviation value DV1 and the deviation value DV2 and generating a modulating control parameter OP1 according to the PID control parameter; making the finally control output value by combining the modulating control parameter OP1 with the first multi-feed-forward output component FFV and the second multi-feed-forward output component FFT to control a gas flow rate adjusting valve and an air flow rate adjusting valve.
Owner:BAOSHAN IRON & STEEL CO LTD

Method and device for controlling furnace temperature of burning heating furnace

A method for controlling furnace temperature of a fired heating furnace is disclosed, comprising: measuring furnace temperatures to obtain furnace temperature feedback values; calculating the differences between furnace temperature setting values and the furnace temperature feedback values as discrepancy values DV1, in accordance with the furnace temperature feedback values and the furnace temperature setting value; calculating the differences between the furnace temperature setting values and the furnace temperature feedback values in a unit time, i.e., the gradient of furnace temperature change values, as discrepancy values DV2; obtaining a speed V of a fired heater machine set from a speed adjuster of the fired heater machine set, and obtaining a first multiple feed forward output components FFV in accordance with the speed V of the machine set (V); obtaining a second multiple feed forward output components FFT in accordance with the differences between the furnace temperature setting values and the furnace temperature feedback values, i.e., the discrepancy values DV1; looking up a PID control parameter in accordance with the discrepancy values DV1 and DV2, based on fuzzy control rule, and creating an adjusting control parameter OP1 in accordance with the PID control parameter; controlling a valve for regulating coal gas flow and a valve for regulating air flow by combining the adjusting control parameter OP1 with the first multiple feed forward components FFV and the second multiple feed forward components FFT as a final control output value.
Owner:BAOSHAN IRON & STEEL CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products