Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

451 results about "Micrometer scale" patented technology

Micrometers have two scales: a primary scale, on the barrel or sleeve, and a secondary scale, on the thimble. Values are taken from each of these scales and combined to make the total measurement. A micrometer uses a calibrated screw or thread (found internally on the spindle) for measurement.

Underwater super-oleophobic oil-water separation mesh membrane and preparation method thereof

The invention discloses an underwater super-oleophobic oil-water separation mesh membrane and a preparation method thereof. The oil-water separation mesh membrane is prepared by coating a micron-thickness chitosan-based polymer coating layer on the mesh wire of a fabric mesh with 100-400 meshes. The oil-water separation mesh membrane is provided with micrometer-scale meshes and the chitosan-based polymer coating layer is provided with protruding structures with a nanoscale width. The preparation method of the oil-water separation mesh membrane comprises the following steps of: (1) cleaning and drying the fabric mesh; (2) dissolving a chitosan-based polymer in acid solution and stirring evenly to obtain mixed solution; (3) immersing the cleaned and dried fabric mesh in the mixed solution, taking out and drying the fabric mesh; and (4) immersing the fabric mesh obtained by the step (3) in alkaline solution, taking out and drying the fabric mesh to obtain the oil-water separation mesh membrane. The oil-water separation mesh membrane provided by the invention has the advantages of large water flux, high oil-water separation speed and good oil-water separation effect, is applicable to treatment of sewage with high oil content, and has good separation effect on normal hexane, petroleum ether, dichloroethane, benzene, animal and vegetable oils and the like.
Owner:TSINGHUA UNIV

Micro-nano composite porous copper surface structure and preparation method and device thereof

The invention relates to the preparation of a porous surface, and discloses a micro-nano composite porous copper surface structure and a preparation method and a preparation device thereof. The preparation method for the micro-nano composite porous copper surface structure is a method for electro-deposition by a hydrogen template method, takes red copper as an anode and a cathode substrate, and includes: performing electro-deposition by taking red copper as an anode and a cathode substrate, and the mixture consisting of the H2SO4 and CuSO4 aqueous solution and additives as the electro-deposition solution to obtain an electro-deposition sample, soaking the electro-deposition sample with deionized water and ethanol and then drying to obtain the micro-nano composite porous copper surface structure; and thermally treating the obtained micro-nano composite porous copper surface structure to enhance the mechanical performance of the micro-nano composite porous copper surface structure. The device for preparing the micro-nano composite porous copper surface structure comprises an electro-deposition tank, an electro-deposition solution, a direct current power supply, a cathode substrate and an anode. The preparation method is simple to operate, and low in cost, and the micro-nano composite porous copper surface structure is controllable; and by the method, a micro-nano composite structure formed by superposing a micrometer scale aperture structure and a wall nano dendrites structure can be prepared, and the aperture of the structure is gradually increased and the structure is uniform.
Owner:SOUTH CHINA UNIV OF TECH

Method to grow self-assembled epitaxial nanowires

Self-assembled nanowires are provided, comprising nanowires of a first crystalline composition formed on a substrate of a second crystalline composition. The two crystalline materials are characterized by an asymmetric lattice mismatch, in which in the interfacial plane between the two materials, the first material has a close lattice match (in any direction) with the second material and has a large lattice mismatch in all other major crystallographic directions with the second material. This allows the unrestricted growth of the epitaxial crystal in the first direction, but limits the width in the other. The nanowires are grown by first selecting the appropriate combination of materials that fulfill the foregoing criteria. The surface of the substrate on which the nanowires are to be formed must be cleaned in order (1) to ensure that the surface has an atomically flat, regular atomic structure on terraces and regular steps and (2) to remove impurities. Finally, epitaxial deposition of the first crystalline material on the cleaned surface is performed, thereby forming the self-assembled nanowires. Thus, one-dimensional epitaxial crystals are obtained with widths and heights at the nanometer scale, and lengths at the micrometer scale, which are aligned along certain crystallographic directions with high crystal quality.
Owner:HEWLETT PACKARD DEV CO LP

Method and system for measuring quasi one-dimensional nano-material Seebeck coefficient

The invention discloses a method and a system that are used for measuring the Seebeck coefficient of a quasi-one-dimensional nano material; two line transition electrodes with micrometer-scaled cross sections are respectively contacted with two centimeter-scaled block metal electrodes, a nano probe system is utilized for leading a single rod of the quasi-one-dimensional nano material to be detected to be connected with the two transition electrodes, temperature difference between the two block metal electrodes is altered, and the temperature difference and corresponding potential difference between the two electrodes are simultaneously measured, thus obtaining the Seebeck coefficient of the quasi-one-dimensional nano material. The corresponding testing system comprises three parts of an experimental platform, a temperature altering device and a data collecting and processing device. The method and the system solve the problem of the contact transition between the centimeter-scaled electrodes and the nano sample to be detected through the micrometer-scaled transition electrodes, utilize the nano probe system for installing the nano material, and lead the nano material not to be randomly dispersed at two sides of the electrodes, thus improving experimental success rate, controllability and reliability; and the provided measuring system has the advantages of simple structure, low cost and easy popularization and the like.
Owner:PEKING UNIV

Method for preparing graphene oxide base porous film by using metal hydroxide nanowires and graphene oxide, and application of graphene oxide base porous film

The present invention discloses a method for preparing a graphene oxide base porous film by using metal hydroxide nanowires and graphene oxide, and an application of the graphene oxide base porous film. According to the present invention, a chemical oxidation ultrasonic dispersion method is adopted to prepare a diluent negatively charged graphene oxide (GO) dispersion liquid with a content of 0.01-0.05%; the GO dispersion liquid is mixed with a positively charged metal hydroxide nanowire solution with a concentration of 0.15-1.2 mM, wherein the diameter is nanometer scale, and the length is micrometer scale; stirring is performed for 5-30 minutes; vacuum suction filtration (negative pressure of 50-85 kPa) is performed on a polycarbonate porous film; a hydrazine hydrate treatment is performed for 5-60 minutes; and an acid (HCl, H2SO4, HNO3) or a complexing agent ethylenediamine tetra acetic acid (EDTA) is adopted to remove the metal hydroxide nanowires to obtain a nanometer GO porous separation film formed by the left pores through removing the nanowires, wherein molecules with a molecular weight of about 350 daltons can be effectively separated with the separation film. The graphene oxide base porous film prepared by the method of the present invention has a separation performance similar to a nanometer graphene oxide separation film, and further is a porous separation film with good separation efficiency.
Owner:ZHEJIANG UNIV

Methods and systems to predict fatigue life in aluminum castings

InactiveUS20090276166A1Accurately fatigue propertyAccurate of fatigue propertyPlug gaugesDigital computer detailsCrazingCasting defect
Methods and systems of predicting fatigue life in aluminum castings that combines extreme values of both casting flaws and microstructures with multiscale life models. The multiscale life models account for differing fatigue crack initiation based on the size scale of the defect and microstructure features, including provisions for generally millimeter scale casting flaws, generally micrometer scale second phase particles by cracking or debonding, or submicrometer scale dislocation interactions with precipitates which form persistent slip bands. In the presence of casting flaws, the fatigue initiation life is negligible and the total fatigue life is spent in propagation of a fatigue crack from such flaws. In the absence of casting flaws, however, the total fatigue life is spent in both crack initiation and propagation, except for the case where fatigue cracks initiate from large second phase particles in a coarse microstructure. The extreme values of casting flaws, second phase particles, mean free path through an aluminum matrix or grain sizes are obtained from extreme value statistics when two or three dimensional sizes of casting flaws and microstructure features are provided by either direct measurement or analytical prediction. The upper bound flaw or microstructure feature size is calculated by extreme value statistics.
Owner:GM GLOBAL TECH OPERATIONS LLC

Methods and apparatuses for the development of microstructured nuclear fuels

Microstructured nuclear fuel adapted for nuclear power system use includes fissile material structures of micrometer-scale dimension dispersed in a matrix material. In one method of production, fissile material particles are processed in a chemical vapor deposition (CVD) fluidized-bed reactor including a gas inlet for providing controlled gas flow into a particle coating chamber, a lower bed hot zone region to contain powder, and an upper bed region to enable powder expansion. At least one pneumatic or electric vibrator is operationally coupled to the particle coating chamber for causing vibration of the particle coater to promote uniform powder coating within the particle coater during fuel processing. An exhaust associated with the particle coating chamber and can provide a port for placement and removal of particles and powder. During use of the fuel in a nuclear power reactor, fission products escape from the fissile material structures and come to rest in the matrix material. After a period of use in a nuclear power reactor and subsequent cooling, separation of the fissile material from the matrix containing the embedded fission products will provide an efficient partitioning of the bulk of the fissile material from the fission products. The fissile material can be reused by incorporating it into new microstructured fuel. The fission products and matrix material can be incorporated into a waste form for disposal or processed to separate valuable components from the fission products mixture.
Owner:THE UNITED STATES AS REPRESENTED BY THE DEPARTMENT OF ENERGY

Nerve conduit material having topological structure and modified by CNT/conducting polymer composite coating and preparation method of nerve conduit material

The invention provides a nerve conduit material having a topological structure and modified by a CNT (Carbon Nano Tube) / conducting polymer composite coating and a preparation method of the nerve conduit material. With electro-spun polymer fibers as templates, CNTs are deposited on the surface of a substrate by use of an electrophoresis method so as to form a three-dimensional porous network CNT coating, next, solvent cleaning and ultrasonic stripping are carried out to form the CNT coating with a directional groove structure, then a conducting polymer is deposited by use of electro-chemical impulse polymerization, and the conducting polymer is coaxially wound around the surface of the CNT bundle to form the nerve conduit material modified by the CNT / conducting polymer composite coating having the directional groove structure. The surface of the nerve conduit material has two layers in the topological structure: at micrometer scale, the coating is provided with a patterned micrometer-scale groove for guiding the rearrangement of a neural cytoskeleton; at nanometer scale, the coating is provided with a nanometer-scale porous network structure for guaranteeing the physical conditions for the attachment and growth of nerve cells and excellent electrochemical properties of the nerve conduit.
Owner:NANJING NORMAL UNIVERSITY
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products