Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

737results about "Fuel elements" patented technology

Niobium-containing zirconium alloy for nuclear fuel claddings

The invention presented herein relates to a niobium-containing zirconium alloy for use in nuclear fuel cladding. The Zr alloy of this invention with superior corrosion resistance is characterized as comprising an alloy composition as follows:1) niobium (Nb), in a range of 0.8 to 1.2 wt. %; one or more elements selected from the group consisting of iron (Fe), molybdenum (Mo), copper (Cu) and manganese (Mn), in a range of 0.1 to 0.3 wt. %, respectively; oxygen (O), in a range of 600 to 1400 ppm; silicon (Si), in a range of 80 to 120 ppm; and the balance being of Zr,2) Nb, in a range of 1.3 to 1.8 wt. %; tin (Sn), in a range of 0.2 to 0.5 wt. %; one element selected from the group consisting of Fe, Mo, Cu and Mn, in a range of 0.1 to 0.3 wt. %; O, in a range of 600 to 1400 ppm; Si, in a range of 80 to 120 ppm; and the balance being of Zr,3) Nb, in a range of 1.3 to 1.8 wt. %; Sn, in a range of 0.2 to 0.5 wt. %; Fe, in a range of 0.1 to 0.3 wt. %; one element selected from the group consisting of chromium (Cr), Mo, Cu and Mn, in a range of 0.1 to 0.3 wt. %; O, in a range of 600 to 1400 ppm; Si, in a range of 80 to 120 ppm; and the balance being of Zr, and4) Nb, in a range of 0.3 to 1.2 wt. %; Sn, in a range of 0.4 to 1.2 wt. %; Fe, in a range of 0.1 to 0.5 wt. %; one element selected from the group consisting of Mo, Cu and Mn, in a range of 0.1 to 0.3 wt. %; O, in a range of 600 to 1400 ppm; Si, in a range of 80 to 120 ppm; and the balance being of Zr.
Owner:KOREA HYDRO & NUCLEAR POWER CO LTD +1

Fast reactor type coupling nuclear reaction implementation method and nuclear reactor for same

The present invention relates to a fast reactor type coupling nuclear reaction implementation method and a nuclear reactor for same. The main contents comprise: a fast reactor type coupling nuclear reaction implementation method, a reactor modular design approach, a fast reactor type coupling nuclear reactor, a reactor core, a fuel element, a nuclear control system, and a proliferation fuel system. The fast reactor type coupling nuclear reactor mainly combusts thorium and nuclear waste, and has inherent security. The reactor main container is composed of a fission pool and a moderating pool that are completely isolated from each other but coupling to each other. A primary coolant is separated from a moderator. A thermal insulation layer is disposed between the fission pool and the moderating pool so that both can perform neutron exchange but heat exchange is blocked. Fast neutrons produced by the fission pool and moderated neutrons reflected by the moderating pool may enable the reactor core to simultaneously perform coupling nuclear reaction of the two types of neutrons. The moderating pool may be provided with the nuclear control system, and ex-core coupling core control may be implemented. The moderating pool is provided with a thorium purification fuel system, and on-line extraction of the purification fuel can be performed, and separation of nuclide is safe and simple, thereby providing a solution to the technical bottleneck of "thorium reactor".
Owner:陈安海

Methods and apparatuses for the development of microstructured nuclear fuels

Microstructured nuclear fuel adapted for nuclear power system use includes fissile material structures of micrometer-scale dimension dispersed in a matrix material. In one method of production, fissile material particles are processed in a chemical vapor deposition (CVD) fluidized-bed reactor including a gas inlet for providing controlled gas flow into a particle coating chamber, a lower bed hot zone region to contain powder, and an upper bed region to enable powder expansion. At least one pneumatic or electric vibrator is operationally coupled to the particle coating chamber for causing vibration of the particle coater to promote uniform powder coating within the particle coater during fuel processing. An exhaust associated with the particle coating chamber and can provide a port for placement and removal of particles and powder. During use of the fuel in a nuclear power reactor, fission products escape from the fissile material structures and come to rest in the matrix material. After a period of use in a nuclear power reactor and subsequent cooling, separation of the fissile material from the matrix containing the embedded fission products will provide an efficient partitioning of the bulk of the fissile material from the fission products. The fissile material can be reused by incorporating it into new microstructured fuel. The fission products and matrix material can be incorporated into a waste form for disposal or processed to separate valuable components from the fission products mixture.
Owner:THE UNITED STATES AS REPRESENTED BY THE DEPARTMENT OF ENERGY
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products