Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

358 results about "Length scale" patented technology

In physics, length scale is a particular length or distance determined with the precision of one order of magnitude. The concept of length scale is particularly important because physical phenomena of different length scales cannot affect each other and are said to decouple. The decoupling of different length scales makes it possible to have a self-consistent theory that only describes the relevant length scales for a given problem.

Chemically synthesized and assembled electronics devices

A route to the fabrication of electronic devices is provided, in which the devices consist of two crossed wires sandwiching an electrically addressable molecular species. The approach is extremely simple and inexpensive to implement, and scales from wire dimensions of several micrometers down to nanometer-scale dimensions. The device of the present invention can be used to produce crossbar switch arrays, logic devices, memory devices, and communication and signal routing devices. The present invention enables construction of molecular electronic devices on a length scale than can range from micrometers to nanometers via a straightforward and inexpensive chemical assembly procedure. The device is either partially or completely chemically assembled, and the key to the scaling is that the location of the devices on the substrate are defined once the devices have been assembled, not prior to assembly.
Owner:HEWLETT PACKARD CO +1

Perfused three-dimensional cell/tissue disease models

A system has been constructed that recapitulate the features of a capillary bed through normal human tissue. The system facilitates perfusion of three-dimensional (3D) cell monocultures and heterotypic cell co-cultures at the length scale of the capillary bed. A major feature is that the system can be utilized within a “multiwell plate” format amenable to high-throughput assays compatible with the type of robotics commonly used in pharmaceutical development. The system provides a means to conduct assays for toxicology and metabolism and as a model for human diseases such as hepatic diseases, including hepatitis, exposure-related pathologies, and cancer. Cancer applications include primary liver cancer as well as metastases. The system can also be used as a means of testing gene therapy approaches for treating disease and inborn genetic defects.
Owner:MASSACHUSETTS INST OF TECH +1

Gradient structures interfacing microfluidics and nanofluidics, methods for fabrication and uses thereof

The present invention relates to a device for interfacing nanofluidic and microfluidic components suitable for use in performing high throughput macromolecular analysis. Diffraction gradient lithography (DGL) is used to form a gradient interface between a microfluidic area and a nanofluidic area. The gradient interface area reduces the local entropic barrier to nanochannels formed in the nanofluidic area. In one embodiment, the gradient interface area is formed of lateral spatial gradient structures for narrowing the cross section of a value from the micron to the nanometer length scale. In another embodiment, the gradient interface area is formed of a vertical sloped gradient structure. Additionally, the gradient structure can provide both a lateral and vertical gradient.
Owner:PRINCETON UNIV

Chemically synthesized and assembled electronic devices

A route to the fabrication of electronic devices is provided, in which the devices consist of two crossed wires sandwiching an electrically addressable molecular species. The approach is extremely simple and inexpensive to implement, and scales from wire dimensions of several micrometers down to nanometer-scale dimensions. The device of the present invention can be used to produce crossbar switch arrays, logic devices, memory devices, and communication and signal routing devices. The present invention enables construction of molecular electronic devices on a length scale than can range from micrometers to nanometers via a straightforward and inexpensive chemical assembly procedure. The device is either partially or completely chemically assembled, and the key to the scaling is that the location of the devices on the substrate are defined once the devices have been assembled, not prior to assembly.
Owner:HEWLETT PACKARD CO +1

Climbing with dry adhesives

A bio-inspired device is provided designed to scale smooth vertical surfaces using anisotropic frictional materials. The device draws its inspiration from geckos and other climbing lizards and employs similar compliance and force control strategies to climb (or hang onto) smooth vertical surfaces including glass, tile and plastic panels. Foremost among the design features embodied in the device are multiple levels of compliance, at length scales ranging from centimeters to micrometers, to allow the device to conform to surfaces and maintain large real areas of contact so that adhesive forces can support it. Structures within the feet ensure even stress distributions over each toe and facilitate engagement and disengagement of the adhesive materials. A force control strategy works in conjunction with the anisotropic adhesive materials to obtain sufficient levels of friction and adhesion for climbing with low attachment and detachment forces.
Owner:THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIV

Superwetting surfaces for diminishing leidenfrost effect, methods of making and devices incorporating the same

ActiveUS20120051489A1Increasing Leidenfrost temperatureMaximize Leidenfrost temperatureFuel elementsNuclear energy generationEngineeringNanoscopic scale
Textured surface for increasing Leidenfrost temperature. The texture comprises of surface features over multiple length scales—from micro to nanoscale—wherein the features at each length scale have a size, aspect ratio, and spacing selected to increase the Leidenfrost temperature. The structure includes an array of microscale structures disposed on the surface, the structure having size, aspect ratio and spacing selected to increase Leidenfrost temperature. The microscale structures may also include nanoscale structures on their surface to create a hierarchical structure. The structures result in an increased Leidenfrost temperature.
Owner:MASSACHUSETTS INST OF TECH

Reactive grafting and compatibilization of polyhedral oligomeric silsesquioxanes

InactiveUS6933345B1Rapid low cost modificationEasy to controlMaterial nanotechnologyFiberSilsesquioxane
The nanoscopic dimensions of polyhedral oligomeric silsesquioxanes (POSS) and polyhedral oligomeric silicates (POS) materials ranges from 0.7 nm to 5.0 nm and enables the thermomechanical and physical properties of polymeric materials to be improved by providing nanoscopic reinforcement of polymer chains at a length scale that is not possible by physically smaller aromatic chemical systems or larger fillers and fibers. A simple and cost effective method for incorporating POSS / POS nanoreinforcements onto polymers via the reactive grafting of suitably functionalized POSS / POS entities with polymeric systems amenable to such processes is described. The method teaches that the resulting POSS-grafted-polymers are particularly well suited for alloying agents by nongrafted POSS entitles such as molecular silicas. The successful alloying of POSS-polymers is aided because their interfacial tensions are reduced relative to non-POSS containing systems.
Owner:HYBRID PLASTICS INC

Climbing with dry adhesives

ActiveUS7762362B2Facilitate engagement and disengagementSolve the lack of adhesionVehiclesStress distributionMicrometer
A bio-inspired device is provided designed to scale smooth vertical surfaces using anisotropic frictional materials. The device draws its inspiration from geckos and other climbing lizards and employs similar compliance and force control strategies to climb (or hang onto) smooth vertical surfaces including glass, tile and plastic panels. Foremost among the design features embodied in the device are multiple levels of compliance, at length scales ranging from centimeters to micrometers, to allow the device to conform to surfaces and maintain large real areas of contact so that adhesive forces can support it. Structures within the feet ensure even stress distributions over each toe and facilitate engagement and disengagement of the adhesive materials. A force control strategy works in conjunction with the anisotropic adhesive materials to obtain sufficient levels of friction and adhesion for climbing with low attachment and detachment forces.
Owner:THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIV

Method and apparatus for measuring parameters of a stratified flow

Various methods are described for measuring parameters of a stratified flow using at least one spatial array of sensors disposed at different axial locations along the pipe. Each of the sensors provides a signal indicative of unsteady pressure created by coherent structures convecting with the flow. In one aspect, a signal processor determines, from the signals, convection velocities of coherent structures having different length scales. The signal processor then compares the convection velocities to determine a level of stratification of the flow. The level of stratification may be used as part of a calibration procedure to determine the volumetric flow rate of the flow. In another aspect, the level of stratification of the flow is determined by comparing locally measured velocities at the top and bottom of the pipe. The ratio of the velocities near the top and bottom of the pipe correlates to the level of stratification of the flow. Additional sensor arrays may provide a velocity profile for the flow. In another aspect, each of the sensors in the array includes a pair of sensor half-portions disposed on opposing lateral surfaces of the pipe, and the signal processor determines a nominal velocity of the flow within the pipe using the signals.
Owner:CIDRA

Artificial synapse chip interface for electronic prosthetic retina

The invention provides microfabricated devices and methods for directing the growth of a cell process to form an artificial synapse. The devices are called artificial synapse chips. The artificial synapse comprises a nanofabricated aperture (about 50–100 nm in size) that connects the cell process to a chemical or electrical means of neuronal excitation. Such an aperture width mimics the length scales of a natural synapse and thus emphasizes the localized spatial relationship between a neuron and a stimulation source. The invention further provides devices and methods for regenerating a nerve fiber into an electrode. The invention thus provides a regeneration electrode that uses a novel neural interface for stimulation and that uses novel surface methods for directing neuronal growth making possible in vivo connection of the devices to neural circuitry in a retina and other anatomical locations.
Owner:THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIV

Fabrication of complex three-dimensional structures based on directed assembly of self-assembling materials on activated two-dimensional templates

Methods of fabricating complex three-dimensional structures on patterned substrates and related compositions are provided. The methods involve depositing on the substrate a block copolymer material that is “mismatched” to the substrate pattern, and then ordering the material to form a complex three-dimensional structure. According to various embodiments, the copolymer material mismatches the substrate pattern in that the symmetry and / or length scale of its bulk morphology differs from that of the pattern. When ordered, a balance between the physics that determines the bulk block copolymer morphology and the physics that determines the substrate surface interfacial interactions results in a thermodynamically stable complex three-dimensional film that varies in a direction perpendicular to the substrate and has a morphology that differs from its bulk morphology.
Owner:WISCONSIN ALUMNI RES FOUND

Initiation and Control of Nanothermal Plasmonic Engineering

The present disclosure concerns a means to use at least a form of electromagnetic excitation or light-matter interaction, including solar or laser energy to generate localized conditions that enable initiation and spatial and temporal control of catalysis, chemical reactions, deposition, synthesis, photocatalysis, electrocatalysis and catalytic processes. Initiation and spatial and temporal control may be obtained by restricting and directing the electromagnetic excitation or light-matter interactions to specific objects or features embedded or located in or on a host matrix material or substrate. In some implementations this provides a means to use electromagnetic excitation to initiate and control chemical synthesis or reactions without entirely or partially heating any of or all of the reaction chamber, reactor mass, reaction precursors and products, or reactor substrate. It may further provide for the use of temperature sensitive elements or substrates. The method of use could include initiation and control of light-matter interactions addressed at optical and other frequencies to generate controlled localized thermal conditions. A further implementation concerns a means to employ electromagnetic excitation or light-matter interactions to generate localized thermal conditions to initiate or control or cause the combination, separation, reformation or reclamation of a gas, a combination of gasses, a material or a combination of materials in the form of a gas, plasma, solid or liquid. The method of use disclosed could provide a means to initiate and control chemical reactions for the generation, use, transfer and output of controlled localized thermal heat or energy. The method of use disclosed could provide a means to realize and control local thermal conditions down to or below the length scale of a single nanometer and down to or below the timescale of a single picosecond. In some implementations surface plasmon excitations may be used to realize and control local thermal conditions down to or below the length scale of a single nanometer and down to or below the timescale of a single picosecond.
Owner:DEFRIES ANTHONY +1

Method for improving planarity of shallow trench isolation using multiple simultaneous tiling systems

In a feature layer of a semiconductor wafer, dummy tiles which overcome the tendency of dishing and erosion to occur during a CMP process are placed with various sizes and in various positions. An isolation zone is provided around active features. A scanning process of the feature layout surveys oxide density and nitride density over the wafer layer outside of said isolation zone. Values of the ratios of oxide / nitride density for two or more length scales which define tiling zones, are calculated. Tile placement and sizing in the zones is dependent upon the oxide / nitride density ratio values; and further upon an oxide deposition model specific to the oxide used in the fabrication process and upon a polishing model of the CMP process being employed.
Owner:ADVANCED MICRO DEVICES INC

System for Determining Repetitive Work Units

During a method for generating a mask pattern for a photo-mask, a target pattern is partitioned into subsets of the target pattern. The subsets of the target pattern may be selected so that at least some of the subsets are approximately identical, thereby dividing the subsets into a degenerate group and a non-degenerate group. A group of the subsets may include multiple shapes, and a given target pattern may be significantly larger than a pre-determined length scale and a given shape in the multiple shapes is smaller than the pre-determined length scale. The non-degenerate group of subsets of the target pattern may be distributed to multiple processors. These processors may be used to determine subsets of the mask pattern based on the non-degenerate group of subsets of the target pattern. The subsets of the mask pattern may be combined to generate the mask pattern.
Owner:DINO TECH ACQUISITION

Elastomeric article with wireless micro and NANO sensor system

A sensor system for obtaining data from an elastomeric article includes at least one wireless sensor. The sensor length-scales range from nano- to micro-scale devices that are small enough to avoid becoming occlusions within the article. The article may include sensors embedded within one of the materials of the article, a layer of sensors built into the article, and a string of sensors disposed within a component or embedded within a component of the article. The sensors may be configured to provide data related to one or more of temperature, pressure, sidewall flex, stress, strain and other parameters. The sensors may be LCD sensors, and / or conductive polymer sensors, and / or bio-polymer sensors and / or polymer diodes suitable for sensing data during the operation of the tire. A power circuit using energy generated by the tire may provide power to the sensors.
Owner:BRIDGESTONE AMERICAS TIRE OPERATIONS LLC

Method and apparatus for generating a template

A method for defining a regular or irregular shape utilizes a template apparatus including a plurality of radially-adjustable corner members connected by length-adjustable straight edge members. The corner members include an angle scale to display the defined angle, while the edge members include a length scale to display the defined length of that edge.
Owner:KLASS KEVIN M +1

Elastomeric article with wireless micro and nano sensor system

A sensor system for obtaining data from an elastomeric article includes at least one wireless sensor. The sensor length-scales range from nano- to micro-scale devices that are small enough to avoid becoming occlusions within the article. The article may include sensors embedded within one of the materials of the article, a layer of sensors built into the article, and a string of sensors disposed within a component or embedded within a component of the article. The sensors may be configured to provide data related to one or more of temperature, pressure, sidewall flex, stress, strain and other parameters. The sensors may be LCD sensors, and / or conductive polymer sensors, and / or bio-polymer sensors and / or polymer diodes suitable for sensing data during the operation of the tire. A power circuit using energy generated by the tire may provide power to the sensors.
Owner:BRIDGESTONE AMERICAS TIRE OPERATIONS LLC

Estimation method for recovery ratio and limit drainage radius of low-permeability gas well

The invention discloses an estimation method for a recovery ratio and a limit drainage radius of a low-permeability gas well. The estimation method comprises the following steps: estimating the limit drainage radius, and estimating the recovery ratio, wherein an estimation formula of the limit drainage radius is Re=(Pi-Pw) / [Theta];the step of estimating the recovery ratio comprises the following substeps: S1) calculating the volume (Vp=Pi[a0b0ze+1 / 2(a0+b0)c*Z<2>e+1 / 3C<2>Z<3>e]) of an elliptical table; S2) calculating the volume (V=Pi(a0+Re)(b0+Re)h) of an elliptical cylinder of a drainage area; and S3) calculating the recovery ratio ER=Vp / V. The estimation method has the following beneficial effects that the method is simple and quick, integrates the influences of a startup pressure gradient, a pressure-break length scale and well point abandonment pressure, brings forward a practical method used for estimating the average startup pressure gradient within the gas well drainage range by the early-period spot-measurement static pressure data of production performance, realizes the early evaluation of the limit drainage radius and the recoverable reserve of the gas well, and provides guidance for designing the reasonable well spacing of a low-permeability gas reservoir.
Owner:SOUTHWEST PETROLEUM UNIV

Three-dimensional nanostructured hybrid scaffold and manufacture thereof

A method of making a three-dimensional biocompatible scaffold capable of supporting cell activities such as growth and differentiation, the method includes providing a supporting grid that forms an open network and provides mechanical support of a second biocompatible material. The second biocompatible material has interconnected cavities that allow nutrients, metabolites and soluble factors to diffuse throughout the scaffold. The scaffold design can be understood as a hierarchically organised structure. At the micron to submicron length scale a top / down manufacturing approach is used to make a structure that will constitute the frame into which a bottom / up processing approach is applied to form an open porous scaffold with specific nano sized features. The advantage of this hierarchically organised design is that benefits can be drawn independently from both the micron and the nano sized structures, promoting specific cell activities and providing sufficient mechanical compliance.
Owner:AARHUS UNIV +1

Air spring having wireless micro and NANO sensors

A sensor system for obtaining data from an air spring having elastomeric body with a plurality of wireless sensors embedded therein. The sensor length-scales range from nano- to micro-scale devices that are small enough to avoid becoming occlusions within the elastomeric body. The air spring may include a spring wall having an internally reinforced elastomeric body portion with the sensors embedded within. The air spring may include a spring wall having an unreinforced elastomeric body portion with the sensors embedded within. The sensors may be configured to provide data related to one or more of temperature, pressure, sidewall flex, stress, strain and other parameters. The sensors may be LCD sensors, and / or conductive polymer sensors, and / or bio-polymer sensors and / or polymer diodes suitable for sensing data during the operation of the air spring.
Owner:BRIDGESTONE AMERICAS TIRE OPERATIONS LLC

Fabrication of diamond shells

A novel method for fabricating diamond shells is introduced. The fabrication of such shells is a multi-step process, which involves diamond chemical vapor deposition on predetermined mandrels followed by polishing, microfabrication of holes, and removal of the mandrel by an etch process. The resultant shells of the present invention can be configured with a surface roughness at the nanometer level (e.g., on the order of down to about 10 nm RMS) on a mm length scale, and exhibit excellent hardness / strength, and good transparency in the both the infra-red and visible. Specifically, a novel process is disclosed herein, which allows coating of spherical substrates with optical-quality diamond films or nanocrystalline diamond films.
Owner:LAWRENCE LIVERMORE NAT SECURITY LLC

Percutaneous access device system facilitating cell growth thereon

ActiveUS7704225B2Promote autologous cell growthPromote growthBiocideElectrotherapyEngineeringBacterial growth
A biocompatible implantable portal is provided that has a wall defining a communicative passage through an interior bore. The exterior of the portal has a neck region adapted to promote autologous cell growth on the neck region. A series of channels are provided on the exterior neck region to facilitate autologous cell growth while disfavoring fluid pooling and bacterial growth. Typical channel widths are from 20 to 300 microns, with adjacent channels being separated by plateaus having a width of between 0 and 600 microns. Providing the portal exterior neck region with a texture varying on a nanometer length scale facilitates autologous cell growth. Applying a coating such as a tissue scaffolding matrix to the neck region prior to implantation also facilitates cell growth. A coupling or a manifold encompassing the neck region facilitates the draw of vacuum and / or mechanical protection for the growing cells.
Owner:VIADERM LLC

Metallic contact for optoelectronic semiconductor device

A contact to a semiconductor layer in a light emitting structure is provided. The contact can include a plurality of contact areas formed of a metal and separated by a set of voids. The contact areas can be separated from one another by a characteristic distance selected based on a set of attributes of a semiconductor contact structure of the contact and a characteristic contact length scale of the contact. The voids can be configured to increase an overall reflectivity or transparency of the contact.
Owner:SENSOR ELECTRONICS TECH

Automated pruning or harvesting system for complex morphology foliage

Method and apparatus for automated operations, such as pruning, harvesting, spraying and / or maintenance, on plants, and particularly plants with foliage having features on many length scales or a wide spectrum of length scales, such as female flower buds of the marijuana plant. The invention utilizes a convolutional neural network for image segmentation classification and / or the determination of features. The foliage is imaged stereoscopically to produce a three-dimensional surface image, a first neural network determines regions to be operated on, and a second neural network determines how an operation tool operates on the foliage. For pruning of resinous foliage the cutting tool is heated or cooled to avoid having the resins make the cutting tool inoperable.
Owner:BURDEN KEITH CHARLES

Microlens arrays for enhanced light concentration

A novel micron-scale lens, a microlens, is engineered to concentrate light efficiently onto an area of interest, such as a small, light-sensitive detector element in an integrated electronic device. Existing microlens designs imitate the form of large-scale lenses and are less effective at small sizes. The microlenses described herein have been designed to accommodate diffraction effects, which dominate the behavior of light at small length scales. Thus a new class of light-concentrating optical elements with much higher relative performance has been created. Furthermore, the new designs are much easier to fabricate than previous designs.
Owner:RGT UNIV OF CALIFORNIA

The design of microfibers with mushroom-shaped tips for optimal adhesion

This invention identifies important geometric parameters of an adhesive microfiber with mushroom-shaped tip for improving and optimizing adhesive ability. The magnitude of pull-off stress is dependent on a wedge angle γ and the ratio of the tip radius to the stalk radius β of the mushroom-shaped fiber. Pull-off stress is also found to depend on a dimensionless parameter x, the ratio of the fiber radius to a length-scale related to the dominance of adhesive stress. Finally, the shape of edge tip, where the surface and sides of the mushroom-shaped tip join, is a factor that impacts strength of adhesion. Optimizing ranges for these parameters are identified.
Owner:NANOGRIPTECH

Compositions and methods for fabricating durable, low-ice-adhesion coatings

This invention provides durable, low-ice-adhesion coatings with excellent performance in terms of ice-adhesion reduction. Some variations provide a low-ice-adhesion coating comprising a microstructure with a first-material phase and a second-material phase that are microphase-separated on an average length scale of phase inhomogeneity from 1 micron to 100 microns. Some variations provide a low-ice-adhesion material comprising a continuous matrix containing a first component; and a plurality of discrete inclusions containing a second component, wherein the inclusions are dispersed within the matrix to form a phase-separated microstructure that is inhomogeneous on an average length scale from 1 micron to 100 microns, wherein one of the first component or the second component is a low-surface-energy polymer, and the other is a hygroscopic material. The coatings are characterized by an AMIL Centrifuge Ice Adhesion Reduction Factor up to 100 or more. These coatings are useful for aerospace surfaces and other applications.
Owner:HRL LAB
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products