Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

603results about How to "Precision therapy" patented technology

Resorbable Probe Including a Device and Method for Minimally Invasive Tissue Sensitization and Treatment

ActiveUS20110060323A1Improved and successful ablationPrecise delivery of therapeuticOrganic active ingredientsPowder deliveryDiseaseEfficacy
The resorbable cryoprobe device and process is a novel approach for treating localized disease allowing for the precise combined application of freezing temperatures and cytotoxic or cryosensitizing agents within a self-contained matrix/package for optimized tissue destruction. The cryopellet is comprised of a list of components including a source of cryogen to produce the sub-zero temperatures, a porous matrix to contain the cytotoxic agent, cytotoxic agent, and a delivery packet. Data presented herein demonstrates the efficacy of this approach in destroying cancerous tissue. For example, the application of freezing temperatures to −10° C. results in approximately 15% cell death, while exposure to cytotoxic agents such as TRAIL produces minimal cell death. The utilization of the cryopellet approach results in a synergistic effect yielding complete cell death at the same temperature. The innovation behind the resorbable probe application includes the strategic combination of agents to activate intrinsic or extrinsic cell death responses (including apoptosis and necrosis), unique packaging of the cryogen and cytotoxic agent, and a unique delivery system. The resorbable cryoprobe technology will assist directly in the treatment of cancer, as well as will likely lead to broader application for disease treatment.
Owner:VARIAN MEDICAL SYSTEMS +1

Multi-scale finite-volume method for use in subsurface flow simulation

A multi-scale finite-volume (MSFV) method to solve elliptic problems with a plurality of spatial scales arising from single or multi-phase flows in porous media is provided. Two sets of locally computed basis functions are employed. A first set of basis functions captures the small-scale heterogeneity of the underlying permeability field, and it is computed to construct the effective coarse-scale transmissibilities. A second set of basis functions is required to construct a conservative fine-scale velocity field. The method efficiently captures the effects of small scales on a coarse grid, is conservative, and treats tensor permeabilities correctly. The underlying idea is to construct transmissibilities that capture the local properties of a differential operator. This leads to a multi-point discretization scheme for a finite-volume solution algorithm. Transmissibilities for the MSFV method are preferably constructed only once as a preprocessing step and can be computed locally. Therefore, this step is well suited for massively parallel computers. Furthermore, a conservative fine-scale velocity field can be constructed from a coarse-scale pressure solution which also satisfies the proper mass balance on the fine scale. A transport problem is ideally solved iteratively in two stages. In the first stage, a fine scale velocity field is obtained from solving a pressure equation. In the second stage, the transport problem is solved on the fine cells using the fine-scale velocity field. A solution may be computed on the coarse cells at an incremental time and properties, such as a mobility coefficient, may be generated for the fine cells at the incremental time. If a predetermined condition is not met for all fine cells inside a dual coarse control volume, then the dual and fine scale basis functions in that dual coarse control volume are reconstructed.
Owner:CHEVROU USA INC +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products