Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

741 results about "Temperature cycling" patented technology

Temperature cycling (or temperature cycle) is the process of cycling through two temperature extremes, typically at relatively high rates of change. It is an environmental stress test used in evaluating product reliability as well as in manufacturing to catch early-term, latent defects by inducing failure through thermal fatigue.

Kits for amplifying and detecting nucleic acid sequences, including a probe

The present invention is directed to a process for amplifying any target nucleic acid sequence contained in a nucleic acid or mixture thereof using a thermostable enzyme. The process comprises treating separate complementary strands of the nucleic acid with a molar excess of two oligonucleotide primers, extending the primers with a thermostable enzyme to form complementary primer extension products which act as templates for synthesizing the desired nucleic acid sequence, and detecting the sequence so amplified. The steps of the reaction can be repeated as often as desired and involve temperature cycling to effect hybridization, promotion of activity of the enzyme, and denaturation of the hybrids formed.
Owner:ROCHE MOLECULAR SYST INC

Fiber optic articles, assemblies, and cables having optical waveguides

Fiber optic articles, assemblies, and cables preserve optical performance by using optical waveguides having a core, a cladding, and a coating system according to the present invention. Moreover, the optical articles, assemblies, and cables of the present invention may achieve performance levels that were previously unattainable, for instance, the present invention contemplates acceptable optical performance for wavelengths such as 1625 nm and higher. Additionally, articles, assemblies, and / or cables of the present invention advantageously preserve optical performance, i.e., have relatively low delta attenuation, when subjected to manufacturing processes and / or environmental conditions such as temperature cycling. In other words, the articles, assemblies, and cables can withstand increased stress / strain before having significant attenuation.
Owner:CORNING OPTICAL COMM LLC

Semiconductor package including leadframe roughened with chemical etchant to prevent separation between leadframe and molding compound

A semiconductor package contains a metal leadframe that has been specially treated by roughening it with a chemical etchant. The roughening process enhances the adhesion between the leadframe and the molten plastic during the encapsulation of the leadframe and thereby reduces the tendency of the package to separate when exposed to moisture and numerous temperature cycles. In one embodiment, the leadframe made of copper is roughened with a chemical etchant that contains sulfuric acid and hydrogen peroxide.
Owner:UTAC HEADQUARTERS PTE LTD

Cryosurgical fluid supply

Improved systems, devices, and methods for delivering cryogenic cooling fluid to cryosurgical probes such as cryosurgical endovascular balloon catheters take advantage of the transients during the initiation and termination of cryogenic fluid flow to moderate the treatment temperatures of tissues engaged by the probe. A flow limiting element along a cryogenic fluid path intermittently interrupts the flow of cooling fluid, often cycling both the fluid flow and treatment temperature. This can maintain the tissue treatment temperature within a predetermined range which is above the treatment temperature provided by a steady flow of cryogenic fluid. In another aspect, room temperature single-use cooling fluid cartridges are filled with a sufficient quantity of cryosurgical fluid to effect a desired endovascular cryosurgical treatment.
Owner:BOSTON SCI SCIMED INC

System and method for reducing energy consumption by a water heater and thermostat for use therewith

The system of the present invention provides energy saving control for a water heater via an intelligent thermostat. This intelligent thermostat provides programmatic control over the HVAC system as is conventional, and provides coordinated control over the water heater temperature set point. This control over the water heater is accomplished via a communications network between the intelligent thermostat and the water heater. In one embodiment the communications are wireless, although wired and network bus communications may also be utilized. Enhanced and coordinated control is also provided so that different operational temperature cycles can be provided to coordinate with the intelligent thermostat's programmatic control of the HVAC system. Separate programmatic control of the water heater is also provided whereby different operational temperature modes may be commanded, e.g. Wake, Sleep, and Demand modes of operation.
Owner:ROBERTSHAW CONTROLS CO

Vestibular stimulation apparatus and associated methods of use

A device and associated method for providing vestibular stimulation to an individual includes active elements positioned on or proximate an ear insert. The active elements include but are not limited to at least one electrode, at least one thermometer, and at least one thermoelectric transducer. The device includes a computerized control module regulating the active elements. The device incorporates an ear insert that allows the active elements to engage the individual's ear canal and therefore access the individual's vestibular system. Vestibular stimulation applied to the individual is customized for directly stimulating desired regions of the brain for therapeutic or diagnostic purposes. In a preferred embodiment, the device provides vestibular stimulation sufficient to promote physiological changes in the individual, the changes selected from the group consisting of circadian temperature cycle time shifts, ascorbic acid production, serotonin production, acetylcholine production, histamine production, and heat shock protein production.
Owner:SCION NEUROSTIM LLC

Semiconductor power module

Use of Pb-free solder has become essential due to the environmental problem. A power module is formed by soldering substrates with large areas. It is known that in Sn-3Ag-0.5Cu which hardly creeps and deforms with respect to large deformation followed by warpage of the substrate, life is significantly shortened with respect to the temperature cycle test, and the conventional module structure is in the situation having difficulty in securing high reliability. Thus, the present invention has an object to select compositions from which increase in life can be expected at a low strain rate. In Sn solder, by doping In by 3 to 7% and Ag by 2 to 4.5%, the effect of delaying crack development at a low strain rate is found out, and as a representative composition stable at a high temperature, Sn-3Ag-0.5Cu-5In is selected. Further, for enhancement of reliability, a method for partially coating a solder end portion with a resin is shown.
Owner:HITACHI POWER SEMICON DEVICE

Lithium-ion secondary battery and electrolyte thereof

The invention discloses a lithium-ion secondary battery and an electrolyte thereof. The electrolyte comprises a solvent, lithium salt and a film forming additive, wherein the solvent comprises a first solvent and a second solvent; the first solvent comprises linear carboxylic ester and ethylene carbonate; the second solvent is one or more of ethyl methyl carbonate, diethyl carbonate, dimethyl carbonate and propylene carbonate; and the film forming additive is one or more of fluoroethylene carbonate, vinylene carbonate, 1,3-propane suhone, succinonitrile, adiponitrile, lithium bis(oxalato)borate, and lithium oxalyldifluoroborate. Due to the collocation of linear carboxylic ester and ethylene carbonate, a solvent system with a higher dielectric constant and low viscosity is obtained; the film forming additive improves poor compatibility between linear carboxylic ester and graphite; and finally the lithium-ion secondary battery adopting the electrolyte presents high-power discharge capacity, excellent high-temperature cycling stability and low-temperature charge and discharge properties.
Owner:NINGDE AMPEREX TECH

System and Method for Automated Testing of an Electric Cable Harness

Briefly, a method and system for testing a cable harness is disclosed. Generally, a cable harness is used to route many electric wires for power, communication, and control. The tester includes a switch system that enables one or more TDR engines to sequentially apply a TDR stimulus to substantially all the wire pairs in the cable harness, and to collect the resulting TDR waveforms. The waveforms are analyzed to determine if the cable harness meets quality standards. In some cases the tester may also perform a continuity, resistance, capacitance, or inductance test on the cable harness. The tester may also measure and use temperature in analyzing the cable harness, or may apply temperature cycling, different or varying atmospheric pressures, vibration, shaking, or shock to the cable harness.
Owner:PSIBER DATA SYST

Device for thermal cycling

An apparatus for performing temperature cycling, comprising a micro channel reactor structure (46, 48, 50), and having a heating structure (b1, b2, B1, B2) defining a desired temperature profile. A preferred embodiment of a heating element structure comprises a pattern of areas of a material capable of providing heat when energized, disposed over said micro channel reactor structure.
Owner:GYROS

Optimized high purity coating for high temperature thermal cycling applications

The invention is directed to a blended material and method for obtaining thermal barriers for high temperature cycling applications that have both high sintering resistance to achieve a high service lifetime and low thermal conductivity to achieve high operating temperatures. These materials are additionally suited for use in high temperature abradable (rub seal) coatings. The invention provides desired coating structures so that the changes in the coating microstructure over the in-service lifetime are either limited or beneficial.
Owner:SULZER METCO (US) INC

High-performance lithium ion battery cathode material and preparation method thereof

The invention relates to a lithium ion battery cathode material LiNixCoyM1-x-yO2 prepared from micron-sized single crystal particles and a preparation method thereof, wherein x is greater than 0 and is not more than 0.8, y is greater than 0 and is not more than 0.5, and M is one or two of Li, Mn, Al and Mg. The invention is characterized in that (1) composite oxide or hydroxide of transition metal nickel, transition metal cobalt and modified metal M is used as a raw material, the composite oxide or hydroxide is porous aggregate comprising nanocrystals, the average size of the aggregate is 2-50 micrometers, and the specific surface area of the aggregate is greater than 15m<2> / g (measured by BET method); (2) the composite metal oxide or hydroxide and lithium salts are milled in a ball mill, the micron-sized composite metal oxide or hydroxide is converted into nanocrystal particles to obtain a nano-sized mixed precursor of the composite metal oxide or hydroxide and the lithium salts, and the mixed precursor is sintered at uniform temperature to obtain the required lithium ion battery cathode material; and (3) the prepared lithium ion battery cathode material LiNixCoyM1-x-yO2 is basically prepared from micron-sized single crystal particles, and the average size of the single crystal particles is 2-20 micrometers. In addition, the product has excellent physical and electrochemical properties, such as ultra-low specific surface area, reasonable particle size distribution, good electrode processing properties, ultra-long cycle life, excellent rate capability, obvious high and low temperature cycling and storing properties and excellent safety; and the product can be widely used as a high-performance lithium ion battery cathode material. The invention provides the high-performance lithium ion battery cathode material and the preparation method thereof.
Owner:QINGDAO LNCM

Apparatus and method for ferroelectric conversion of heat to electrical energy

The present invention relates to a new method and apparatus for converting heat to electric energy. The invention exploits the rapid changes in spontaneous polarization that occur in ferroelectric materials during phase change. The invention permits robust and economical generation of electric energy from thermal energy, and it can be used in many different applications. In one aspect, the present invention relates to an apparatus for converting heat to electric energy comprising a pair of electrodes; a ferroelectric layer formed there between with a ferroelectric material characterized with a Curie temperature, Tc, such that when the temperature of the ferroelectric material is lower than Tc, the ferroelectric material is in a ferroelectric phase in which very powerful polarization is established spontaneously in the unit cells of the ferroelectric material, and when the temperature of the ferroelectric material is greater than Tc, spontaneous polarization is not established in the unit cells of the ferroelectric material; and a means for alternately delivering a flow of cold fluid and a flow of hot fluid to the ferroelectric layer so as to alternately cool the ferroelectric layer at a first temperature TL that is lower than Tc, and heat the ferroelectric layer at a second temperature TH that is higher than Tc, thereby the ferroelectric material of the ferroelectric layer undergoes alternating phase transitions between the ferroelectric phase and the paraelectric phase with temperature cycling.
Owner:THE NEOTHERMAL ENERGY

Lithium ion battery, negative plate thereof and preparation method thereof

The invention provides a lithium ion battery, a negative plate thereof and a preparation method thereof. The negative plate comprises a negative electrode current collector, and a negative film which is arranged on the negative electrode current collector and comprises a negative electrode active material, a negative electrode adhesive and a conductive agent of the negative electrode. The negative electrode active material comprises a silicon-based active material and a carbon-based active material; the negative electrode adhesive is distributed on the surface of the negative electrode active material; the surface of the silicon-based active material contains -OH; the negative electrode adhesive at least comprises a -COOM adhesive; and the mass ratio of the negative electrode adhesive distributed on the surface of the silicon-based active material to the silicon-based active material is larger than the mass ratio of the negative electrode adhesive distributed on the surface of the carbon-based active material to the carbon-based active material. The negative plate provided by the invention is used for improving the binding power of granules of the silicon-based active material and can solve the problem that the charge and discharge performance of the carbon-based active material is deteriorated due to excessive negative electrode adhesive. The lithium ion battery provided by the invention has good low temperature discharge performance and high temperature cycling performance.
Owner:NINGDE AMPEREX TECH

Coated-modified lithium manganese positive electrode material and preparation method thereof

The invention discloses a coated-modified lithium manganese positive electrode material and the preparation method thereof. A manganese source compound, an M source compound and a lithium source compound are taken as raw material for preparing LiaMn2 -bMbO4 particles, and then are mixed with molten solvent and A-source compound, so as to obtain coated-modified lithium manganese positive electrode material. Compared with the prior art, the LiaMn2-bMbO4 particles are similar to spheres in shape and are in crystal face connection through curved surfaces which have no clear edges; on one hand, the LiaMn2 -bMbO4 particles have very small specific surface area, so that molten solvent and coating material are more evenly dispersed on the surfaces of the particles, and the control to average thickness of a coating is facilitated; on the other hand, the features have very small surface energy, the coating material is enabled to be more easily to be combined with the LiaMn2 -bMbO4 particles to form the coating. Therefore, the coated-modified lithium manganese positive electrode material has an excellent high temperature cycling performance.
Owner:宁波富理电池材料科技有限公司

PCR chip micro-system and method for preparing the same

The portable micro PCR chip system prepared by MEMS or micro-model technique in bio-micro EMC system field comprises some trap-type reaction ponds for DNA amplification connected to liquid inlet / outlet by flow passages, an integrated micro-heater and sensor for amplifying DNA by the temperature cycle control system, a micro-pump and micro-valve on pond inlet to lead the DNA initiator and ponds insulation, and maybe a fluorescence excitation source, a detector and a fluorescence signal detection and analysis system for on-line detection on PCR product. This chip system provides a high-flux and fast DNA amplification means with low cost and well reliability.
Owner:PEKING UNIV

High-temperature solder, high-temperature solder paste and power semiconductor device using same

The present invention intends to provide a power semiconductor device using a high-temperature lead-free solder material, the high-temperature lead-free solder material having the heat resistant property at 280° C. or more, and the bondability at 400° C. or less, and excellent in the suppliabilty and wettability of solder, and in the high-temperature storage reliability and the temperature cycle reliability. In the power semiconductor device according to the present invention, a semiconductor element and a metal electrode member were bonded each other by a high-temperature solder material comprising Sn, Sb, Ag, and Cu as the main constitutive elements and the rest of other unavoidable impurity elements wherein the high-temperature solder material comprises 42 wt %≦Sb / (Sn+Sb)≦48 wt %, 5 wt %≦Ag<20 wt %, 3 wt %≦Cu<10 wt %, and Ag+Cu≦25 wt %.
Owner:HITACHI LTD

MEMS based pyroelectric thermal energy harvester

A pyroelectric thermal energy harvesting apparatus for generating an electric current includes a cantilevered layered pyroelectric capacitor extending between a first surface and a second surface, where the first surface includes a temperature difference from the second surface. The layered pyroelectric capacitor includes a conductive, bimetal top electrode layer, an intermediate pyroelectric dielectric layer and a conductive bottom electrode layer. In addition, a pair of proof masses is affixed at a distal end of the layered pyroelectric capacitor to face the first surface and the second surface, wherein the proof masses oscillate between the first surface and the second surface such that a pyroelectric current is generated in the pyroelectric capacitor due to temperature cycling when the proof masses alternately contact the first surface and the second surface.
Owner:UT BATTELLE LLC

Methods and systems for multiplexing ir-mediated heating on a microchip

The present invention relates to methods and systems for rapid multiplexed heating of a plurality of small volume samples on a microchip. More specifically, the present invention relates to methods and systems for non-contact temperature cycling of the samples using infrared (IR)-mediated heating of small, micro to nanoliter, volume samples, wherein each cycle can be completed in as little as a few seconds. Depending on the system used, the present invention involves a spinning microchip or an immobile microchip having a plurality of micro-heating areas thereon. In the case of the spinning chip, the micro-heating areas are located in a circular configuration on the chip, so the micro-heating areas can be accessed by static heating source(s) by spinning the microchip. In case of the immobile microchip, fiber optics are used to direct radiation from a heating source or multiple heating sources directly to the micro-heating areas on a microchip.
Owner:UNIV OF VIRGINIA ALUMNI PATENTS FOUND

Fiber optic articles, assemblies, and cables having optical waveguides

Fiber optic articles, assemblies, and cables preserve optical performance by using optical waveguides having a core, a cladding, and a coating system according to the present invention. Moreover, the optical articles, assemblies, and cables of the present invention may achieve performance levels that were previously unattainable, for instance, the present invention contemplates acceptable optical performance for wavelengths such as 1625 nm and higher. Additionally, articles, assemblies, and / or cables of the present invention advantageously preserve optical performance, i.e., have relatively low delta attenuation, when subjected to manufacturing processes and / or environmental conditions such as temperature cycling. In other words, the articles, assemblies, and cables can withstand increased stress / strain before having significant attenuation.
Owner:CORNING OPTICAL COMM LLC

Cryogenically Cooled Solid State Lasers

Methods and constructions for cryogenically cooled solid state lasers are provided that allow the cooling channels to be embedded within the buffer heat sinks used to conductively cool the laser medium. Several gain medium geometries are disclosed that are compatible with efficient and straight forward cryogenic cooling techniques using practical pump chamber designs while eliminating the need for the pump light to traverse the cryogenic layers and allowing for smooth temperature cycling. A number of active material configurations that can be generally adapted for pumping by high power diodes, including slab, thin disk, active mirror, and rod geometries, are shown to be compatible with the cryogenic cooling approaches. Modeling results based on the preferred cooling configurations indicate substantial improvement in the performance of common solid state lasers, including Nd- and Yb-doped lasers. These improvements have been realized in a multiple thin-disk Yb:YAG folded resonator configuration.
Owner:SNAKE CREEK LASERS

Interconnects for photovoltaic panels

Various embodiments of the invention provide an interconnect designed to be placed between layers of a photovoltaic laminate, and that has built-in in-plane stress relief features. In accordance with various embodiments, the interconnect, once implemented into a photovoltaic laminate, can withstand at least 200 temperature cycles, as is required by certain certifying bodies, without suffering failure. According to one embodiment of the present invention, an interconnect is provided for connecting a first photovoltaic cell to the bus array or a second photovoltaic cell within a photovoltaic laminate, the interconnect comprising: a single conductive wire having a cross-section sufficient for placement between layers of a photovoltaic laminate; wherein the single conductive wire comprises a stress-relief feature, and the stress-relief feature enables the interconnect to maintain a connection between the first photovoltaic cell and the bus array or the second photovoltaic cell while absorbing stress induced by a change in position of the first photovoltaic cell relative to a position of the bus array or the second photovoltaic cell.
Owner:APPLIED SOLAR

Method of cooling ultrasound treatment apparatus and ultrasound treatment apparatus using the same

An ultrasound treatment apparatus includes a transducer configured to irradiate ultrasound waves onto an object, and a membrane disposed in an irradiation direction of the ultrasound waves and to form, with the transducer, a space in which a cooling fluid circulates. The apparatus further includes a first temperature sensor configured to measure a temperature of a skin of a patient contacting the membrane, and a second temperature sensor configured to measure a temperature of the transducer. The apparatus further includes a cooling unit configured to circulate the cooling fluid based on the measured temperatures.
Owner:SAMSUNG ELECTRONICS CO LTD

Cathode material of lithium ion battery, and preparation method thereof and lithium ion battery

The invention provides a cathode material of a lithium ion battery. The cathode material is composed by the atomic ratio shown in formula (I): Lia(MxMn2-x)(O4-yZy), wherein a is greater than or equal to 0.8 and less than or equal to 1.2; x is greater than or equal to 0 and less than or equal to 1; y is greater than or equal to 0 and less than or equal to 1; M is one or more selected from Li, Na, K, Ca, Mg, Al, Ti, Sc, Ge, V, Cr, Zr, Co, Ni, Zn, Cu, La, Ce, Mn, Hf, Nb, Ta, Mo, W, Ru, Ag, Sn, Pb and Si; and Z is one or more selected from OH, halogens, N, P, S and O. Primary particles of the cathode material have sphere-like morphologies, wherein (111) face is connected with adjacent equivalent crystal face through a curved surface having no clear edges. The invention also provides a preparation method for the cathode material of the lithium ion battery and the lithium ion battery. The cathode material provided by the invention has good high-temperature cycling performance and good filling property.
Owner:NINGBO INST OF MATERIALS TECH & ENG CHINESE ACADEMY OF SCI

Lithium manganate composite positive electrode material, a preparing method thereof and a lithium-ion battery

The invention provides a lithium manganate composite positive electrode material, a preparing method thereof and a lithium-ion battery. The composite positive electrode material is of a core-shell structure. The inner layer of the composite positive electrode material is an in-situ composite of lithium manganate and nickel-rich concentration gradient type nickel cobalt manganese / lithium aluminate LiMn2O4-LiNi1-x-yCox(Al / Mn)yO2, wherein x is more than 0 and less than or equal to 0.25, and y is more than 0 and less than or equal to 0.15; the outer shell of the composite positive electrode material is a metal oxide coated layer. According to the lithium manganate composite positive electrode material and the preparing method thereof, the in-situ composite of lithium manganate and nickel-rich concentration gradient type nickel cobalt manganese / lithium aluminate is obtained after in-site sintering of a manganese source, a nickel-rich concentration gradient type nickel cobalt manganese / lithium aluminate precursor, and a lithium source, then shell-layer metal oxide is cladded by using spray drying, and finally the composite positive electrode material is obtained by combining a microwave sintering process. The composite positive electrode material provided by the invention has relatively high specific capacity, and excellent high temperature cycling and storage performances.
Owner:INST OF PROCESS ENG CHINESE ACAD OF SCI
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products