Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

5863results about "Energy efficient heating/cooling" patented technology

System for modular building construction

Construction systems for erecting building structures comprise a plurality of prefabricated interconnectable modular building units, each unit not meeting at least one of the ISO certification criteria for transport of cargo but each unit comprising a frame shaped as a rectangular parallelopiped and comprised of framing members and a plurality of nodes, each node situated at a corner of said frame for selective interconnection with other units, the nodes and the exterior dimensions of the frame conforming to ISO shipping standards such that each unit is transportable using the ISO intermodal transportation system, and such that when the units are aggregated horizontally and vertically and adjacent units are interconnected, a building structure comprising at least one habitable space is formed. The modular units are assembled in a factory remote from the job site, and are there constructed to a semi-finished state, including installation of one or more of interior fit-out systems and finishes, exterior envelope systems, plumbing systems, electrical systems, environmental systems, and fire protection systems, following which the semi-finished modular units are transported from the factory to the job site, where they are craned into place and secured to form the structure being erected, a plurality of adjacent pairs of semi-finished modular units also being “stitched” together, and the semi-finished modular units are thereafter constructed to a finished state.
Owner:GLOBAL BUILDING MODULES

System for modular building construction

Construction systems for erecting building structures comprise a plurality of prefabricated interconnectable modular building units, each unit not meeting at least one of the ISO certification criteria for transport of cargo, but each unit comprising a frame shaped as a rectangular parallelopiped and comprised of framing members and a plurality of nodes, each node situated at a corner of said frame for selective interconnection with other units, the nodes and the exterior dimensions of the frame conforming to ISO shipping standards such that each unit is transportable using the ISO intermodal transportation system, and such that when the units are aggregated horizontally and vertically and adjacent units are interconnected, a building structure comprising at least one habitable space is formed. The modular units are assembled in a factory remote from the job site, and are there constructed to a semi-finished state, including installation of one or more of interior fit-out systems and finishes, exterior envelope systems, plumbing systems, electrical systems, environmental systems, and fire protection systems, following which the semi-finished modular units are transported from the factory to the job site, where they are craned into place and secured to form the structure being erected, a plurality of adjacent pairs of semi-finished modular units also being “stitched” together, and the semi-finished modular units are thereafter constructed to a finished state.
Owner:GLOBAL BUILDING MODULES

Heat engine

A heat engine (10) achieves operational efficiencies by: 1) recovering waste heat from heat engine expander (14) to preheat heat-engine working fluid, 2) using super-heated working fluid from compressor (402) to pre-heat heat-engine working fluid, and 3) using reject heat from condenser (93) and absorber (95) to heat the heat-engine boiler (12). A dual heat-exchange generator (72) affords continuous operation by using gas-fired heat exchanger (212) to heat generator (72) when intermittent heat source (40), e.g., solar, is incapable of heating generator (72). The combination of heat engine (10) and absorption and compression heat transfer devices (60, 410) allows use of low-temperature heat sources such as solar, bio-mass, and waste heat to provide refrigeration, heating, work output including pumping and heating of subterranean water and electrical generation.
Owner:OHIO STATE INNOVATION FOUND

Hybrid heating and/or cooling system

A hybrid heating and / or cooling system may combine different energy sources (e.g., solar and geothermal) into a single system. The hybrid heating and / or cooling system may include one or more heat pumps, a heat exchanger system, a solar and / or waste energy system, and a delivery system for delivering heat (and / or cool air) to a space such as a building. These systems may be interconnected and controlled using various conduits, pumps, valves and controls. The solar energy system may provide heat (e.g., low grade heat) to the working fluid at the input to the source side of the heat pump and / or may provide heat (e.g., high grade heat) to the delivery system for direct solar and / or waste energy heating.
Owner:THE H L TURNER GROUP

Residential heat pump water heater

A heat pump water heater and systems and methods for its control are disclosed. The systems are configured to heat water within a water storage tank of a heat pump water heater wherein a controller within the system is operatively connected to a plurality of heat sources including at least one electric heating element and a heat pump and sensors in order to selectively energize one of the plurality of heat sources. The controller is configure to process data representative of the temperature of water within the tank near the top of the water storage tank, and rate of water flowing out of the water storage tank, in order to automatically selectively energize the heat sources. The selection of heat sources by the controller is determined by a mode of operation selected by the user and the data processed by the controller in view of the selected mode of operation.
Owner:HAIER US APPLIANCE SOLUTIONS INC

Method and device for continuous generation of cold and heat by means of the magneto-calorific effect

The device (10) for continuous generation of cold and heat by the magneto-calorific effect, comprises a chamber (11), divided into two adjacent compartments (12, 13), separated by a wall (14). The chamber (11) contains a rotating element (15) made from at least one magneto-calorific material, a first circuit (17a) with a first heat exchange fluid circulating therein and a second circuit (17b) with a second heat exchange fluid circulating therein. The chamber (11) is connected to magnetic device (16) for generating a magnetic field in the region of the compartment (12) in which the rotating element (15) is located. When the above is set in rotation the part thereof located in the first compartment (12) is magnetized upon undergoing an increase in temperature. On passing into the second compartment (13), the part is demagnetized upon undergoing a cooling. The heat and the cold thus generated are transmitted by the heat exchange fluids respectively to user circuits for heat (19) and cold (22) for recovery and use for ulterior purposes.
Owner:HAUTE ECOLE DINGIE & DE GESTION DU CANTON DE VAUD

Method and apparatus for controlling a multi-source heating system

InactiveUS6874693B2Solve insufficient heating capacityEasy to useHeating fuelAir-treating devicesElectricityEngineering
The present invention is directed at methods and apparatus for controlling multi-source heating systems. The multi-source heating systems of the present invention may include two or more heat sources such as a heat pump, a furnace, an electric heating strip, or any other suitable heat source. An illustrative system includes a multi-zone, multi-source heating system. The illustrative system may determine which of the multiple sources to use depending on a number of factors. Some illustrative factors include information about zones calling for heat, external environment information, and information about the heat sources. One of the heat sources may be, for example, a heat pump, and a determination of whether to activate the heat pump may include determining the current heating capacity of the heat pump and comparing the heating capacity to the amount of heat needed to satisfy the current heat calls. Methods for determining which of at least two heat sources to use are also provided. Additional embodiments include methods for controlling multiple-source heating systems, and systems for providing heat with multiple sources.
Owner:ADEMCO INC

Contact heat-transferring cooking system with an electric hotplate

A contact heat-transferring electric hotplate (11) is provided, which is made from nonoxidic ceramic, particularly silicon nitride. Its very thin hotplate body (14) in the form of a disk is installed in self-supporting manner in a hob plate, e.g. by bonding, and has an extremely flat surface or which is adapted to the cooking vessel shape, which creates such a small gap with respect to said vessel that a coupling is possible even with higher power densities with only a temperature difference of a few degrees. The heating means (17) is also in contact with or directly connected to the underside of the hotplate body (14).
Owner:E G O ELEKTRO GERAETEBAU GMBH

Magnetic refrigerating device and magnetic refrigerating method

A magnetic refrigerating device includes: a magnetic refrigerating unit including a magnetic material “A” exhibiting a magneto-caloric effect that the temperature of the material “A” is increased by the application of a magnetic field and the temperature of the material “A” is decreased by the removal of a magnetic field, a magnetic material “B” exhibiting a magneto-caloric effect that the temperature of the material “B” is decreased by the application of a magnetic field and the temperature of the material “B” is increased by the removal of a magnetic field, a heat conductive material “a” exhibiting higher heat conductivity under the application of a magnetic field and lower heat conductivity under the removal of a magnetic field, and a heat conductive material “b” exhibiting lower heat conductivity under the application of a magnetic field and higher heat conductivity under the removal of a magnetic field, wherein the magnetic refrigerating unit is configured so as to include at least one layered structure denoted by “AaBb” or “AbBa”; and a magnetic field-applying means to apply a magnetic field to the magnetic refrigerating unit.
Owner:KK TOSHIBA

Heat Exchanger and Water Heater

A heat exchanger A1 includes a partition 19 partitioning the space 35 surrounded by a coiled tube 60 at an axially intermediate portion of a housing 2 into a first and a second regions 35a and 35b and partitioning the coiled tube 60 into a first and a second heat exchanging portions HT1 and HT2. The combustion gas supplied to the first region 35a flows to a combustion gas path 36 by passing through a clearance 61 of the first heat exchanging portion HT1 and then passes through a clearance 61 of the second heat exchanging portion HT2. With this structure, the amount of heat recovery is increased, and the heat exchange efficiency is enhanced while simplifying the overall structure of the heat exchanger A1 and reducing the size of the heat exchanger.
Owner:NORITZ CORP

Magnetic refrigeration material and magnetic refrigeration device

A magnetic refrigeration material has magnetic material particles with a magnetocaloric effect and an oxidation-resistant film formed on the surfaces of the magnetic material particles.
Owner:KK TOSHIBA

Reciprocating and rotary magnetic refrigeration apparatus

A reciprocating and rotating magnetic refrigeration apparatus adopts a dynamo concept and the design of magnetic supply path and heat transfer unit to alternately magnetize and demagnetize a magnetocaloric material to generate thermo-magnetic effect for cooling. The apparatus includes magnetocaloric material located on the head of stator nose poles, magnetic supply coils surrounding the magnetocaloric material, permanent magnets located on a rotating stator, and a heat transfer unit in contact with the magnetocaloric material. Two adjacent magnetocaloric materials magnetize and demagnetize alternately to alter the temperature and entropy of the magnetocaloric material, and through the heat transfer unit, heat exchange occurs between the magnetocaloric materials and the atmosphere to achieve the cooling effect.
Owner:IND TECH RES INST

Steam jet type heat pump heat distribution system for recovering thermal power plant condensing residual heat

The present invention provides a steam injection heatpump heating system. The technical solution is that the system is composed of a steam injector, a high voltage steam pipeline, a low voltage steam pipeline, a throttling gear and a bypass connecting pipe. The high voltage steam enters in the heat exchanger heaing backwater after injecting lower steam turbine voltage condensing in low temperature, this realises waste heat recovery in low temperature condensing steam of the steam turbine. The core component is the steam injector, the high voltage heat supplying pumping is used as high-velocity jet acceleratively formed in the injecting tube of the working steam, and lower voltage steam turbine is rolled in the mixing room as injected flow, mixing steam in the expanding section of the steam injector is decelerately compressed in a certain back pressure, then sending to the heat interchanger for heating backwater, a certian back pressure mixing steam condenses to water after heat releasing in the exchanger, returning to the backwater system of electrical factory, completing thermal circuit of the combined heat and power generation set.
Owner:TSINGHUA UNIV

Magnetocaloric element

A magnetocaloric element (1) made by an alignment of at least two adjacent sets (MC1-10) of magnetocaloric materials having different Curie temperatures. The magnetocaloric materials within a same set (MC1-10) have the same Curie temperature. The sets (MC1-10) are arranged according to an increasing Curie temperature, and the magnetocaloric element (1) comprises elements (MA1-2) for initiating a temperature gradient between a hot end (6) and an opposed cold end (7) of the magnetocaloric element (1).
Owner:COOLTECH APPL S

Method and apparatus for operating an electric water heater

A control system for an electric water heater having an upper heating element and a lower heating element is disclosed. The control system includes a control module that controls operation of the electric water heater by selectively toggling the upper and lower heating elements between an ON state and an OFF state and a consumer interface module that allows a consumer to input a set point temperature and select an energy savings mode for the electric water heater. The control module regularly monitors hot water usage and adjusts the set point temperature by a predetermined setback amount until a capacity of the water heater matches consumer usage.
Owner:EMERSON ELECTRIC CO

Rotary magnetic refrigeration device and application thereof

The invention discloses a rotary magnetic refrigeration device. The rotary magnetic refrigeration device comprises a magnetic field source, two active regenerator modules and cold and hot fluid heat exchange channels, and is characterized in that: two packing layers sandwich a magnetic medium in a radial direction so as to form one active regenerator module; the two active regenerator modules are staggered coaxially and axially and arranged at an interval of 180 DEG in the circumferential direction, and pass through an upper half magnetic field region covered with the magnetic field source and a lower half nonmagnetic region alternately when rotating synchronously; A hot fluid channel which is communicated with a high temperature end heat exchanger is statically arranged in the pace of the magnetic field region at the rotating periphery of the active regenerator module; and the cold fluid channel which is communicated with a low temperature end heat exchanger is statically arranged in the space of the nonmagnetic region at the rotating periphery of the active regenerator module, and thermal insulation layers are arranged between the two active regenerator modules in the axial direction, and at the periphery and left and right end faces of the cold and hot fluid channels.
Owner:XI AN JIAOTONG UNIV

Magnetocaloric device

A magneto-caloric (MC) device is disclosed. The MC device comprise a rotor, a housing disposed about and concentric with the rotor and mechanically coupled to the rotor, wherein the housing comprises at least one axial slot, at least one set of MC elements, wherein each set of MC elements comprises at least one MC element, and at least one MC element of each set of MC elements is disposed within each of the at least one axial slots, and at least one working-segment corresponding to each set of MC elements, wherein each working-segment is disposed axially around the rotor and external to the housing, and wherein each working-segment comprises, a yoke substantially defining an inner volume comprising a first inner volume and a second inner volume, and a magnetic field production (MFP) unit magnetically coupled to the yoke and configured to provide a magnetic field within the first inner volume.
Owner:GENERAL ELECTRIC CO

Electrocaloric refrigerator and multilayer pyroelectric energy generator

Provided are electrocaloric devices, pyroelectric devices and methods of forming them. A device which can be a pyroelectric energy generator or an electrocaloric cooling device, can include a first single-layer heat engine having a first side configured to be in contact with a first reservoir and a second side configured to be in contact with a second reservoir, wherein the first reservoir comprises a fluid. The device can also include a second single-layer heat engine having a first side in contact with the first reservoir and a second side in contact with a third reservoir and a channel disposed between the first single-layer heat engine and the second single-layer heat engine, the channel configured to transport the fluid from a first end to a second end. The device can further include one or more power supplies configured to apply voltages to the first and the second single-layer heat engine.
Owner:STC UNM

Magnetic refrigerator

A magnetic refrigerator has a housing, heat exchangers filled with magnetic particles having a magnetocaloric effect, a rotary drive, a rotating shaft, a magnetic field generator fixed to the rotating shaft which applies a magnetic field to or eliminates a magnetic field from the magnetic particles in the heat exchangers following rotation of the rotating shaft, a refrigerant pump which circulates the refrigerant following rotation of the rotating shaft, a rotary refrigerant control valve which controls supply of the refrigerant to and discharge of the refrigerant from the heat exchangers following rotation of the rotating shaft, and a refrigerant circuit. The magnetic field generator and the rotary refrigerant control valve are configured to synchronize application of the magnetic field to or elimination of the magnetic field from the magnetic particles with supply of the refrigerant to or discharge of the refrigerant from the heat exchangers.
Owner:KK TOSHIBA

Heat pump water heater control

Systems and methods for controlling a heat pump water heater (HPWH) are disclosed. The systems include an interface for accepting a user input and configured to indicate a mode of operation, and indicate at least one error condition when an error condition exists. The systems are operative to diagnose various failure conditions and as advise a user that maintenance may be needed and to adjust operation for varying environmental or other external conditions.
Owner:HAIER US APPLIANCE SOLUTIONS INC

Water heater and control method therefor

A water heater includes combustion means (burner) that combusts fuel and generates exhaust; heat exchange means (primary heat exchanger and secondary heat exchanger) that exchanges heat of the exhaust for supplied water; bypassing means (bypass pipe) that makes the supplied water flow to an outlet of the heat exchange means; exchanged heat temperature detection means (exchanged heat temperature sensor) that detects temperature of the supplied water after heat exchange; flow rate adjustment means (bypass valve) that adjusts a volume of the supplied water flowing into the bypassing means and the heat exchange means; and a control unit that controls the flow rate adjustment means so as to make a predetermined volume of the supplied water or over flow to the heat exchange means.
Owner:PURPOSE CO LTD

Reciprocating and rotary magnetic refrigeration apparatus

A reciprocating and rotating magnetic refrigeration apparatus adopts a dynamo concept and the design of magnetic supply path and heat transfer unit to alternately magnetize and demagnetize a magnetocaloric material to generate thermo-magnetic effect for cooling. The apparatus includes magnetocaloric material located on the head of stator nose poles, magnetic supply coils surrounding the magnetocaloric material, permanent magnets located on a rotating stator, and a heat transfer unit in contact with the magnetocaloric material. Two adjacent magnetocaloric materials magnetize and demagnetize alternately to alter the temperature and entropy of the magnetocaloric material, and through the heat transfer unit, heat exchange occurs between the magnetocaloric materials and the atmosphere to achieve the cooling effect.
Owner:IND TECH RES INST

Electrically heated aircraft composite floor panel

An aircraft floor heating panel is constructed for mechanical strength and to meet special heating requirements next to a door in an aircraft. The panel has a lightweight core. Each surface of the core is first covered with at least one carbon-fiber reinforced composite layer for protection against deterioration. Each carbon fiber layer in turn is covered by a glass fiber reinforced composite layer for mechanical strength. A foil heater is arranged inside the composite panel coextensive with at least a portion of the panel area. A heat distributing metal plate covers the panel as an upper step-on surface. A heat insulating layer is bonded to the panel opposite the heat distributing metal plate. A triple heat control is provided for an increased safety against fire hazards.
Owner:AIRBUS OPERATIONS GMBH

System and method for hydronic space heating with electrical power generation

This invention provides a system and method for cogeneration of electric power and building heat that efficiently interfaces a liquid-cooled electric power generator with a multi-zone forced hot water (hydronic) space heating system. The system and method utilizes an electric generator with an electric output capacity (kW) that is near the time-averaged electric power consumption rate for the building and with a heat generation capacity that is useful for meeting building heating needs. This generator is operated as the priority source of heat for the building, but normally only when there is a demand for heat in building, with the intent of running the generator for long periods of time and generating a total amount of electric energy (kWhs) that is significant in comparison to the total electric energy consumption of the building over time. The actual onsite time-variable power demand (kW) is met by a combination of the cogenerated electric power produced on site and quantities of electric power from the public electric power grid or another external power source. Hence, useful electric power is generated on site as a by-product of the required generation of heat for space or water heating. The generator is run at a speed / operating condition that is appropriate to maintaining a long operational life.
Owner:CLIMATE ENERGY

Thermal generator with magnetocaloric material

A heat generator comprising at least one thermal module comprising a magnetocaloric element crossed by a heat transfer fluid and two hot and cold chambers arranged on each side of the magnetocaloric element and containing a displacement device for directing the heat transfer fluid through the magnetocaloric element. A magnetic arrangement creates a magnetic field variation in each magnetocaloric element. A device for driving the displacement device, according to reciprocating movement in the concerned chamber, to displace the heat transfer fluid in synchronization with the magnetic field variation. The drive device contains a closed fluid circuit which connects the hot and cold chambers in which a working fluid is driven by a suction and discharge device. At least one switching interface is synchronized with the magnetic arrangement for alternately connecting each hot and cold chamber to suction and discharge sides of the suction and discharge device and inversely.
Owner:COOLTECH APPL S

Heat generator comprising a magneto-caloric material and thermie generating method

A heat generator comprising a magneto-caloric material and a method for generating efficient and reliable thermies enabling of substantially limiting displaceable inert masses in order to produce a magnetic field variation required for obtaining a magneto caloric effect and usable by individuals and / or industries. The generator (10) comprises magneto caloric thermal elements (Ti) which are circularly arranged and crossed by conduits containing coolant flowing therethrough and magnetic elements (Gi) exposing the thermal elements (Ti) to a magnetic field action. The generator (10) also comprises magnetic divergence (mj) elements arranged between the thermal elements (Ti) and the magnetic elements (Gi) and coupled to displacement mechanism (not represented) for moving from one thermal element (Ti) to another thermal element (Ti+1) and initiating the magnetic flux variation in the thermal elements (Ti), thereby promoting the calorie and / or frigorie generation. The generator (10) can be used for tempering, cooling, heating, conserving, drying and air-conditioning.
Owner:COOLTECH APPL S

Liquid circulation heating system

A liquid circulation heating system includes a heat pump for producing a heated liquid and a heating radiator. The heat pump has a heat pump circuit for circulating a refrigerant to heat a liquid. The refrigerant contains tetrafluoropropene and difluoromethane as main components. According to the liquid circulation heating system having such a configuration, a negative impact on global warming can be reduced.
Owner:PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products