Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

690results about "Waste gas energy" patented technology

System and method for hydronic space heating with electrical power generation

This invention provides a system and method for cogeneration of electric power and building heat that efficiently interfaces a liquid-cooled electric power generator with a multi-zone forced hot water (hydronic) space heating system. The system and method utilizes an electric generator with an electric output capacity (kW) that is near the time-averaged electric power consumption rate for the building and with a heat generation capacity that is useful for meeting building heating needs. This generator is operated as the priority source of heat for the building, but normally only when there is a demand for heat in building, with the intent of running the generator for long periods of time and generating a total amount of electric energy (kWhs) that is significant in comparison to the total electric energy consumption of the building over time. The actual onsite time-variable power demand (kW) is met by a combination of the cogenerated electric power produced on site and quantities of electric power from the public electric power grid or another external power source. Hence, useful electric power is generated on site as a by-product of the required generation of heat for space or water heating. The generator is run at a speed/operating condition that is appropriate to maintaining a long operational life.
Owner:CLIMATE ENERGY

System and method for hydronic space heating with electrical power generation

ActiveUS7284709B2Minimizing starting and stoppingMaximizing run timeInternal combustion piston enginesGas turbine plantsCogenerationElectric generator
This invention provides a system and method for cogeneration of electric power and building heat that efficiently interfaces a liquid-cooled electric power generator with a multi-zone forced hot water (hydronic) space heating system. The system and method utilizes an electric generator with an electric output capacity (kW) that is near the time-averaged electric power consumption rate for the building and with a heat generation capacity that is useful for meeting building heating needs. This generator is operated as the priority source of heat for the building, but normally only when there is a demand for heat in building, with the intent of running the generator for long periods of time and generating a total amount of electric energy (kWhs) that is significant in comparison to the total electric energy consumption of the building over time. The actual onsite time-variable power demand (kW) is met by a combination of the cogenerated electric power produced on site and quantities of electric power from the public electric power grid or another external power source. Hence, useful electric power is generated on site as a by-product of the required generation of heat for space or water heating. The generator is run at a speed / operating condition that is appropriate to maintaining a long operational life.
Owner:CLIMATE ENERGY

Energy-saving heat supply system with function of reducing temperature of heat supply return water

The invention discloses an energy-saving heat supply system with a function of reducing the temperature of heat supply return water, and belongs to the field of improvement of energy utilization efficiency. Heat exchange can be repeatedly carried out on heat sources by multistage heat exchangers, multistage absorption heat exchange units, multistage compression heat pumps and an ice making type refrigerator, accordingly, the heat supply areas can be enlarged, and the energy utilization efficiency can be improved. The energy-saving heat supply system has the advantages that the temperature of the return water of heat supply primary pipe networks can be reduced and reach 0 DEG C, the return water contains 10% of ice particles, accordingly, route heat loss of the return water of the heat supply primary pipe networks can be reduced, the temperature difference of the return water of the heat supply primary pipe networks can be increased and reaches 118 DEG C from the original 60 DEG C, the flow rate of circulating water of the heat supply primary pipe networks can be lowered, energy consumption of circulating pumps can be reduced, heat supply flow rates of a user side can be greatly increased, the delivery efficiency of the pipe networks can be improved, the heat supply scale can be expanded, waste heat of a cooling tower can be recycled, and the like.
Owner:DALIAN BAOGUANG ENERGY SAVING AIR CONDITIONING EQUIP

System for controlled fluid heating using air conditioning waste heat

InactiveUS20080245087A1Optimum air conditioning system efficiencyFree from damageHeat recovery systemsEvaporators/condensersEngineeringAir conditioning
A system is disclosed which utilizes air conditioning waste to heat a second fluid such as swimming pool water. The second condenser for pool water heating is connected in parallel with the air conditioning condenser. An accumulator is connected between the condensers and the expansion valve to absorb fluctuations in refrigerant level due to different operating conditions caused by the pool water heating, thereby ensuring that liquid refrigerant is always supplied to the expansion valve. A controller reads the ambient air temperature at the air conditioning condenser and reads the air conditioning system condensing pressure and uses an algorithm to compute ambient air fan speed at the air conditioning condenser based on these two inputs to maintain a consistent heated pool water temperature.
An alternate system includes first and second condensers connected in series with an accumulator connected between the second condenser and the expansion valve and a pressure equalization line connected between the compressor and the accumulator. A controller reads the ambient air temperature at the air conditioning condenser and reads the air conditioning system condensing pressure and uses an algorithm to compute ambient air fan speed at the air conditioning condenser based on these two inputs to maintain a consistent heated pool water temperature.
Owner:ORCUTT JOHN WALTER
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products