Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

2402results about "Recuperative heat exchangers" patented technology

Portable high-temperature, high-pressure washing plant

A washing system for high temperature cleaning applications, such as carpet-cleaning, is disclosed that provides a consistent cleaning fluid temperature. The washing system utilizes multiple heat exchangers and multiple heat paths. The heating and power source is provided by a medium duty, diesel cycle engine. Multi-stage heating involves heat transfer from the engine's coolant to the cleaning fluid and heat transfer from the exhaust of the engine to the cleaning fluid via an intermediate medium. The system also includes a fluid clutch used to engage a power takeoff from the engine to operate the pump and blower of the washing plant. A failsafe source cutoff diverts the exhaust flow from thermal contact with an intermediate heat transfer oil.
Owner:BLUE LINE EQUIP

Thermoelectric-based power generation systems and methods

Some embodiments provide a waste heat recovery apparatus including an exhaust tube having a cylindrical outer shell configured to contain a flow of exhaust fluid; a first heat exchanger extending through a first region of the exhaust tube, the first heat exchanger in thermal communication with the cylindrical outer shell; a second region of the exhaust tube extending through the exhaust tube, the second region having a low exhaust fluid pressure drop; an exhaust valve operatively disposed within the second region and configured to allow exhaust fluid to flow through the second region only when a flow rate of the exhaust fluid becomes great enough to result in back pressure beyond an allowable limit; and a plurality of thermoelectric elements in thermal communication with an outer surface of the outer shell.
Owner:GENTHERM INC

Heat exchanger with flat tubes

A heat exchanger with a plurality of stacked flat tubes and a collecting tank having a wall extending around the entire periphery of, and connected to, the end of the stacked flat tubes. A first medium may be distributed through the collecting tank and flat tubes. Internal inserts are in the flat tubes, with the inserts being bonded between the broad sides of the tubes and, in the region of connection of the tubes to the collecting tank, being configured to compensate for length changes in the stacking direction caused by temperature changes, as by recesses in connectors such as wave flanks or by corrugated wave flanks. The flat tubes with inserts such as described may be separately provided for use in manufacture of heat exchangers.
Owner:MODINE MFG CO

Annular flow concentric tube recuperator

InactiveUS6390185B1Minimal effectivenessNegligible reduction in effectivenessRecuperative heat exchangersStationary tubular conduit assembliesCounter flowVolumetric Mass Density
An annular flow concentric tube heat exchanger for heating two counter flowing fluid streams has been devised. Although capable of heating gases or liquids, the primary purpose of the invention is to function as an improved recuperator for recovering exhaust heat from a Brayton Cycle gas turbine engine, Ericsson Cycle engine or similar recuperated engine. The basic element of the recuperator is a concentric tube assembly that, in the preferred embodiment, is comprised of four concentric tubes that enclose three concentric annular flow passages. The low pressure exhaust flows through the inner and outer annular passages while the high pressure compressor exit air flows through the annular passage that is between the two low pressure passages. The high and low pressure flows are in opposite directions to achieve the high effectiveness that is only available with a counterflow heat exchanger. Heat is transferred from the exhaust gas to the compressor air though the tube walls on each side of the high pressure passage. Two low pressure passages are provided for each high pressure air passage to compensate for the lower pressure (and therefore lower density) of the exhaust gas. Multiple concentric tube assemblies are used to make a recuperator. The tube assemblies terminate in header assemblies located at each end of the concentric tube assemblies. The headers are made of simple plates and rings that serve the dual function of structurally locating the concentric tube assemblies and directing the flow to the proper passage in the concentric tube assemblies. High and low pressure flow tubes provide flow passages connecting the recuperator to the engine compressor air and exhaust tubing respectively. The annular flow concentric tube recuperator can be easily made from commercial tubing with minimal special tooling and is capable of very high effectiveness with very low pressure drop.
Owner:PROE POWER SYST

Energy storage systems

There is herein described energy storage systems. More particularly, there is herein described thermal energy storage systems and use of energy storable material such as phase change material in the provision of heating and / or cooling systems in, for example, domestic dwellings.
Owner:SUNAMP

Geometry of heat exchanger with high efficiency

The present disclosure includes geometry of a two-fluid heat exchanger to provide higher energy efficiency than conventional heat exchangers. The geometry is based upon sequential branching of nearly circular passages in sets, followed by some deformation and twisting of the sequential branches that intermingle flow passages of one fluid with flow passages of another fluid. The flow passages gradually vary in dimension from larger branching at fluid entrance and exit to smaller branching in the middle section of the heat exchanger. The heat exchanger is substantially symmetric, with the sequential branching in the first half being mirrored as serial regrouping in the second half. The present disclosure also provides stacking methods and layered manufacturing methods for fabricating the three-dimensional geometry of the heat exchanger.
Owner:TRUSTEES OF DARTMOUTH COLLEGE THE

Heat exchanger for exhaust gas cooling; method for operating a heat exchanger; system with a heat exchanger for exhaust gas cooling

A heat exchanger, in particular for cooling the exhaust of a motor vehicle internal combustion engine, is disclosed, the heat exchanger comprising a first partial heat exchanger with at least one first flow channel through which a medium to be cooled is to flow and at least one third flow channel through which a first coolant is to flow, at least one second partial heat exchanger with at least one second flow channel through which a medium to be cooled is to flow and at least one fourth flow channel through which a second coolant is to flow, wherein the at least one first flow channel and the at least one second flow channel are fluidly connected, and the at least one first flow channel and the at least one second flow channel have at least one first specific heat transfer surface and at least one second heat transfer surface, wherein second specific heat transfer surface area, divided by first specific heat transfer surface area, yields a quotient (ψ), the at least one first flow channel having a larger quotient (ψ) than second flow channel.
Owner:BEHR GMBH & CO KG

Exhaust heat recovery muffler

The exhaust heat recovery muffler includes a muffler unit having the outer surface thereof covered, an exhaust heat recovery unit disposed integrally with the muffler unit, and a switching valve that switches the flow of exhaust gas into the muffler unit and into the exhaust heat recovery unit. An outer pipe of the muffler unit and a cylindrical shell of the exhaust heat recovery unit, covering the outer circumference of the outer pipe, are coaxially disposed. The exhaust heat recovery unit includes a heat exchange chamber, formed by a pair of partitions provided between the inner circumference of the shell and the outer circumference of the outer pipe, and small-diameter pipes penetrating through the pair of partitions and extending through the heat exchange chamber. A heat exchange medium flows inside of the heat exchange chamber.
Owner:FUTABA IND CO LTD

Heat Exchange Using Underground Water System

In this disclosure, we have the following examples and teachings: A geothermal heating and or cooling system is introduced here which is deriving cooled or heated liquid via existing infrastructure of water pipe system in use for the houses and buildings, e.g. from the city water system or pipe network, or from the well water (or lake or river or sea or ocean or the like), piped or channeled to the buildings, through pipes or conduits or channels or closed enclosures. The system derives cooled liquid from existing underground infrastructure, including or for example, below-ground water pipes. The system gains a temperature advantage from the geothermal ground temperature, which remains roughly constant throughout the year in most regions. The system uses (e.g.) a storage tank to contain a working fluid and store thermal energy. In one example, multiple chambers and / or tanks are used for water heaters or coolers, with different connection and flow mechanisms. Other examples and designs are also discussed and shown here.
Owner:BTPATENT

Heat exchanger

An economically manufactured heat exchanger is provided and includes a plurality of elongated, straight, flat tubes (16), each formed of two identical halves (78,80) joined to each other in mirror image fashion and each having opposed open ends and all arranged in a stack (18). At least one spacer wall (36) is disposed within each tube and extends generally from end to end thereof to define at least two side-by-side first fluid flow paths within a tube. An elongated housing (10) contains the stack and includes spaced headers (20,22) with each header including a tube slot for the adjacent end of each tube (16) in the stack (18). Spacers (26) in the stack separate adjacent tubes in the stack from one another and the spacers include ribs defining a serpentine flow path for a second fluid. An opening (30) is located in the housing (10) near each end thereof and is in fluid communication with the second fluid flow path (28).
Owner:MODINE MFG CO

EGR cooler with dual coolant loop

An integrated exhaust gas recirculation (EGR) cooler with dual coolant loops comprises an exhaust gas inlet and an exhaust gas outlet for recirculating exhaust gas. An exhaust gas flow path extends between the exhaust gas inlet and the exhaust gas outlet to direct recirculating exhaust gas from the exhaust gas inlet to the exhaust gas outlet. A first coolant flow path extends between a first coolant inlet and a first coolant outlet to direct a first coolant flow from the EGR cooler in heat exchange relation with the exhaust gas flow path. A second coolant flow path extends between a second coolant inlet and a second coolant outlet to direct a second coolant flow through the EGR cooler in heat exchange relation with the exhaust gas flow path.
Owner:MODINE MFG CO

Exhaust heat recovery system

An exhaust heat recovery system (10) includes: an exhaust heat exchanger (18) that is communicated with a catalytic converter (16) through an exhaust gas pipe (14A), and that recovers exhaust heat into a coolant; and heat transfer restriction means (50) provided between the catalytic converter (16) and the exhaust heat exchanger (18). The heat transfer restriction means (50) includes a heat insulator (56) disposed between a first exhaust gas pipe (52) and a second exhaust gas pipe (54) that constitute the exhaust gas pipe (14A), and. restrains a released heat from the catalytic converter (16) from reaching the exhaust heat exchanger (18).
Owner:TOYOTA JIDOSHA KK

Tube bundle heat exchanger comprising tubes with expanded sections

A heat exchanger useful for high temperature applications such as EGR cooling and fuel reformer applications comprises a tube bundle made up of a plurality of tubes, each having at least one end expanded to an enlarged polygonal cross-section, and having central portions with a generally smaller cross section. When the tubes are formed into a bundle, the enlarged end portions nest with one another and interstitial spaces are provided between the central portions of the tube. The enlarged end portions are preferably retained by a header ring having a multifaceted inner peripheral sidewall which is adapted to form brazed lap joints with the outward facing surfaces of the peripheral tubes end portions in the tube bundle. In one preferred arrangement, axially aligned enlarged portions are provided intermediate the ends of at least some of the tubes. These enlarged intermediate portions nest with one another and eliminate or reduce the need for baffle plates.
Owner:DANA CANADA CORP

Energy-Efficient and Environmentally Advanced Configurations For Naptha Hydrotreating Process

Systems and methods of hydrotreating different naphtha feed stocks destined for a refining reforming unit and other applications with less energy consumption than conventionally possible, while producing less greenhouse gas emissions, and / or using a lesser number of heaters and correspondingly less capital investment in such heaters, air coolers, and water coolers, are provided. According to the more examples of such systems and methods, such reductions are accomplished by directly integrating a naphtha stripping process section with a naphtha splitting process section. Additional reductions can also be accomplished through directly integrating a naphtha hydrotreat reaction process section with the naphtha stripping process section.
Owner:SAUDI ARABIAN OIL CO

Membrane-integrated energy exchange assembly

A method of forming a membrane panel configured to be secured within an energy exchange assembly may include forming an outer frame defining a central opening, and integrating a membrane sheet with the outer frame. The membrane sheet spans across the central opening, and is configured to transfer one or both of sensible energy or latent energy therethrough. The integrating operation may include injection-molding the outer frame to edge portions of the membrane sheet. Alternatively, the integrating operation may include laser-bonding, ultrasonically bonding, heat-sealing, or the like, the membrane sheet to the outer frame.
Owner:NORTEK AIR SOLUTIONS CANADA INC

Heat exchanger and use thereof in showers

An improved heat exchanger design is disclosed. The design of the heat exchanger provides for a safe separation of the flow streams even in the event of leakage. An improved heat recovery device for use in the drain conduit of standard shower installations, comprising the heat exchanger of the invention, is also disclosed.
Owner:NOBILE JOHN R

Exhaust heat exchanger

An exhaust heat exchanger includes a water tank accommodating tubes and having an outside space defined outside of the tubes, a gas tank having an exhaust passage and an outside space defined outside of the exhaust passage, a dividing portion to separate the outside space of the water tank from the exhaust passage of the gas tank, and a communication portion. The outside space of the gas tank and the outside space of the water tank communicate with each other through the communication portion.
Owner:DENSO CORP

Exhaust gas heat exchanger

An exhaust gas heat exchanger has a tank, laminated exhaust gas tubes where the exhaust gas flows, a cooling water inlet pipe and a cooling water outlet pipe. The cooling water flows into the tank and flows through water passages between adjacent exhaust gas tubes and between an inner wall of the tank and an outermost exhaust gas tube. Ribs are formed on the exhaust gas tubes so as to lead the cooling water after colliding with an inner wall toward an upstream side of the exhaust gas tubes to prevent the cooling water from being stuck. Otherwise, spaces between an inner wall of a casing and the exhaust gas tubes are regulated to keep the flow rate of the cooling water in the casing so that the cooling water is prevented from being boiled locally by slow flow rate of the cooling water.
Owner:DENSO CORP

Heat exchanger

A heat exchanger, particularly a charge air heat exchanger or exhaust gas heat exchanger, is provided for the heat exchange between a first fluid, particularly a charge air, or an exhaust gas, and a second fluid, particularly a coolant, comprising the following: heat exchanging guides for the first and second fluids, the guides being separated from each other in the core, the core having a plurality of flow channels through which the first fluid flows, and a housing that receives the flow channels and through which the second fluid flows at least one compartment lid, which is flow-connected to the flow channels, and a base that is attached to the compartment lid and that is equipped with one or more passage openings for flow channels. In order to achieve an advantageous connection of the compartment lid to the base, particularly in case the compartment lid and the base are made of different materials, the invention provides that the compartment lid is attached to the base via one or more connections as a bolted connection and / or a slotted crimping.
Owner:MAHLE BEHR GMBH & CO

Exhaust gas heat exchanger

An exhaust gas heat exchanger comprising an external shell (20) extending between two tube plates (30, 31) and defining a coolant chamber; internal tubes (38) forming exhaust gas passages which extend between the tube plates (30, 31); an exhaust gas manifold divided by a baffle plate (29) into first and second chambers (26, 28) with an exhaust gas inlet (25) and outlet (27) respectively. The baffle plate (29) is provided with a valve (51) which can be operated between an open position, which exhaust gas flows along the cooling tubes (38), and a closed position, in which exhaust gas is diverted directly from the first chamber (26) to the second chamber (28).
Owner:SERCK HEAT TRANSFER +1

Heat Exchanger

In a heat exchanger used for an EGR cooler or the like, in order to provide a heat exchanger that has a small number of parts, is assembled easily, can flow cooling water evenly at each part, and does not cause partial boiling, a strip-shaped metal plate is turned up and bent in a fanfold manner, flat first flow channels 3 and second flow channels 4 are formed alternately, both the ends of the first flow channels 3 are closed with slit blocks 6, projecting stripes 3a are bent and formed at the positions of ports 11 for the cooling water 10 in proximity to the slit blocks 6, and gaps 3c are formed between respective paired projecting stripes 3a.
Owner:T RAD CO LTD

Exhaust gas cooler

An exhaust gas cooler comprising an inlet chamber shaped to restrict exhaust gas flow to certain exhaust gas passages provided therein is disclosed. The inlet chamber may comprise a flow deflector which deflects a proportion of exhaust gas into, for example, the upper exhaust gas cooling passages thus restricting flow to lower exhaust gas cooling passages. In one embodiment the flow deflector is rotatably mounted and can also function as a bypass valve. Alternatively apertures provided within plates which can collectively define the inlet chamber may be of a differing size to restrict exhaust gas flow to certain exhaust gas cooling passages. A more balanced flow through the various exhaust gas cooling passages results increasing heat-exchange efficiency of the exhaust gas cooler.
Owner:HONEYWELL INT INC

Exhaust heat recovery system

In an exhaust heat recovery system, electric power generation efficiency of a thermoelectric conversion element can be improved, and warming-up of a catalyst can be completed early, without using a complicated device. The exhaust heat recovery system according to the invention includes an exhaust pipe in which exhaust gas discharged from an internal combustion engine flows; a catalyst which purifies the exhaust gas; a heat recovery portion which is fitted to the exhaust pipe, and which recovers heat contained in the exhaust gas; a thermoelectric conversion element which generates electric power using thermoelectric conversion; and a heat pipe which connects the heat recovery portion to the thermoelectric conversion element, and which transfers the heat recovered in the heat recovery portion to the thermoelectric conversion element. An operation starting temperature of the heat pipe is set so as to be higher than an activation temperature of the catalyst.
Owner:TOYOTA JIDOSHA KK

Heat exchanger

A heat exchanger, in particular a charge air cooler or an exhaust gas cooler for an internal combustion engine, comprising a plurality of essentially parallel tubes and at least one collector box on the output side, the tubes each emptying into the collector box on the output side, and a gas flow flowing from the tubes into the collector box and from the collector box into an outlet of the collector box, a structure for interacting with the gas flow being provided at least one of the tubes or collector box, a condensation being transported to the outlet with the aid of the structure.
Owner:MAHLE INT GMBH

Heat exchanger with bypass

A heat exchanger with an external bypass is formed by a core portion including a plurality of stacked tubular members and a corrugated bypass tube positioned substantially parallel to the core portion. A first set of flow passages is defined within the tubular members for the flow of a first fluid therethrough, and a second set of flow passages is defined between adjacent tubular members as the tubular members are stacked together to form the core portion. A pair of external end plates is sealingly attached to transverse end wall portions of the stacked tubular members and to the ends of the bypass tube thereby forming the heat exchanger with an external bypass that comprises a single unit that can be brazed or joined together in a single operation.
Owner:DANA CANADA CORP

Egr cooler

Provided is an EGR cooler which can solve the problem of the vibrated tubes without causing thermal deformation due to stagnation of the coolant water, without complexity of piping in the coolant water system and without increase in pressure loss. The EGR cooler comprises tubes 3 and a shell surrounding the tubes 3, the coolant water being supplied and discharged to and from the shell 1 and being passed through the respective tubes 3 so as to make heat exchange of the exhaust gas with the coolant water. In the shell 1, an intermediate support plate 13 with a plurality of through-holes 14 is arranged and mutually adjacent ones of the tubes 3 are grouped for penetratingly fixture to the through-hole 14. A coolant water passage 15 is ensured between the tubes 3 grouped and penetratingly fixed to the same through-hole 14 of the intermediate support plate 13 for free communication between the tubes 3.
Owner:HINO MOTORS LTD +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products