Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1834 results about "Thermoelectric conversion" patented technology

Waste heat recovery system and thermoelectric conversion system

A waste heat recover system includes a mechanism for supplying power by use of a thermoelectric conversion unit, and a mechanism for utilizing heat released from the thermoelectric conversion unit. Heat released from the thermoelectric conversion unit is utilized for, for example, heating, defrosting, defogging, temperature keeping of fuel, temperature keeping of an internal combustion engine, and temperature keeping of a fuel cell. The waste heat recovery system is equipped in, for example, cars, incinerators, fuel cells, and industrial machinery.
Owner:SHOWA DENKO KK

Thermoelectric conversion material, thermoelectric conversion device and manufacturing method thereof

A thermoelectric conversion material and a thermoelectric conversion device having a novel structure of an increased figure of merit are provided by forming nano-wires of thermoelectric material in a smaller cross-sectional size. The thermoelectric conversion material comprises nano-wires obtained by introducing a thermoelectric material (semiconductor material) into columnar pores of a porous body. The porous body is formed by providing a structure in which columns of a column-forming material containing a first component (for example, aluminum) are distributed in a matrix containing a second component (for example, silicon or germanium or a mixture of them) being eutectic with the first component, and then removing the column-forming material from the structure. The average diameter of the nano-wires of the thermoelectric material is 0.5 nm or more and less than 15 nm, and the spacing of the nano-wires is 5 nm or more and less than 20 nm.
Owner:CANON KK

Thermoelectric and Pyroelectric Energy Conversion Devices

New thermoelectric materials and devices are disclosed for application to high efficiency thermoelectric power generation. New functional materials based on oxides, rare-earth-oxides, rare-earth-nitrides, rare-earth phosphides, copper-rare-earth oxides, silicon-rare-earth-oxides, germanium-rare-earth-oxides and bismuth rare-earth-oxides are disclosed. Addition of nitrogen and phosphorus are disclosed to optimize the oxide material properties for thermoelectric conversion efficiency. New devices based on bulk and multilayer thermoelectric materials are described. New devices based on bulk and multilayer thermoelectric materials using combinations of at least one of thermoelectric and pyroelectric and ferroelectric materials are described. Thermoelectric devices based on vertical pillar and planar architectures are disclosed. The advantage of the planar thermoelectric effect allows utility for large area applications and is scalable for large scale power generation plants.
Owner:TRANSLUCENT PHOTONICS +1

Heating and cooling device

A heating and cooling device includes a case having an air passage, a blower for sending air to the air passage, a thermoelectric conversion element and a controller. The thermoelectric conversion element is disposed in the case, and has a heat-absorbing part and a heat-emitting part, which are switched based on a current direction. The thermoelectric conversion element heats or cools air sent by the blower by switching the current direction. The controller stops electricity supplied to the thermoelectric conversion element, when air sent by the blower toward the thermoelectric conversion element is stopped while the thermoelectric conversion element is supplied with electricity.
Owner:DENSO CORP

Integrated solar energy conversion system, method, and apparatus

A solar energy conversion package includes a photovoltaic (PV) cell, a thermionic or thermoelectric conversion unit and a thermal heating system. Solar radiation is concentrated by a lens or reflector and directed to the PV cell for electrical power conversion. A water circulation system maintains the PV cell at working temperatures. The thermionic or thermoelectric conversion cell is coupled between these cells in the thermal path to generate additional power. Additional efficiencies may be gained by partitioning the solar radiation with prisms or wavelength specific filters or reflective coatings into discrete spectrum segments optimized for each conversion unit for maximizing efficiency of electrical energy conversion and equipment design. Integrating all three of these conversion techniques produces a synergistic system that exceeds the performance conventional solar conversion systems.
Owner:LOCKHEED MARTIN CORP

Thermoelectric direct conversion device

A thermoelectric direct conversion device is foemed of a plurality of thermoelectric direct conversion semiconductor pairs each including a p-type semiconductor and an n-type semiconductor; a plurality of high-temperature electrodes and a plurality of low-temperature electrodes each electrically connecting the p-type semiconductor and the n-type semiconductor; a high-temperature insulating plate and a low-temperature insulating plate each thermally connected to the plurality of thermoelectric direct conversion semiconductor pairs via the plurality of high-temperature electrodes and the plurality of low-temperature electrodes, respectively; at least one diffusion barrier layer is disposed between the high- or low-temperature electrodes and the thermoelectric direct conversion semiconductor pairs, and the entire device is hermetically sealed up within an airtight case containing a vacuum or inert gas atmosphere, whereby diffusion between the electrodes and the semiconductor pairs is prevented to provide a thermoelectric conversion devise exhibiting excellent power generation performances for a long time period.
Owner:KK TOSHIBA

Thermoelectric conversion materials

The main object of the present invention is to provide the thermoelectric conversion materials having a high thermoelectric conversion performance and the excellent mass productivity. The object of the present invention is achieved by providing the thermoelectric conversion materials comprising a core-shell structure having a plurality of core parts and shell parts for covering the above-mentioned core parts, wherein the plurality of the above-mentioned core parts are independent with each other and the above-mentioned shell parts are provided continuously.
Owner:DAI NIPPON PRINTING CO LTD

Grain oriented ceramics and production method thereof

To provide a grain oriented ceramic capable of exerting excellent piezoelectric properties, a production method thereof, and a piezoelectric material, a dielectric material, a thermoelectric conversion element and an ion conducting element each using the grain oriented ceramic, there is provided a grain oriented ceramic comprising, as the main phase, an isotropic perovskite-type compound which is represented by formula (1): {Lix(K1−yNay)1−x}(Nb1−z−wTazSbw)O3 in which x, y, z and w are in respective composition ranges of 0≦x≦0.2, 0≦y≦1, 0≦z≦0.4, 0≦w≦0.2 and x+z+w>0. The main phase comprises a polycrystalline body containing from 0.0001 to 0.15 mol of any one or more additional element selected from metal elements, semimetal elements, transition metal elements, noble metal elements and alkaline earth metal elements belonging to Groups 2 to 15 of the Periodic Table, per mol of the compound represented by formula (1). A specific crystal plane of each crystal grain constituting said polycrystalline body is oriented.
Owner:DENSO CORP

Thermoelectric conversion module

A thermoelectric conversion module for generating power by using a temperature difference and realizing a large-size module with soundness to improve substantial filling density of a thermoelectric semiconductor, including a sliding member having high heat conductivity intervening at least between a heating plate of a high-temperature heat source side and a heat source side electrode portion of a thermoelectric semiconductor and a coupling plate for coupling the heating plate to the cooling plate, wherein the thermoelectric semiconductors and the electrode portions are integrated by being sandwiched between the cooling plate and the heating plate via the sliding member, and the sliding member in the pressurized state accepts relative sliding between the sliding member and the heat source side electrode portion or the heating plate.
Owner:CENTRAL RESEARCH INSTITUTE OF ELECTRIC POWER INDUSTRY +1

Thermoelectric conversion module and thermoelectric conversion apparatus

According to one embodiment, a thermoelectric conversion module includes a thermoelectric conversion portion, a first external electrode, and a second external electrode. The thermoelectric conversion portion includes a single thermoelectric conversion portion element, or electrically connected thermoelectric conversion portion elements. The thermoelectric conversion portion element includes a high temperature electrode, low temperature electrodes, and an n-type and a p-type thermoelectric conversion semiconductor layer disposed between the high temperature electrode and the low temperature electrodes. The first and the second external electrode are electrically connected to one of the low temperature electrode and another one of the low temperature electrode respectively. The first external electrode and the second external electrode are disposed opposite each other with the thermoelectric conversion portion therebetween in such a manner that the centerlines of the first and second external electrodes are aligned substantially in line with each other.
Owner:KK TOSHIBA

Thermoelectric Conversion Module

To provide a thermoelectric conversion module enabling cost reduction by reducing time and work required for assembly, and so on. A thermoelectric conversion module 10 comprises a tubular element unit 21 having a plurality of ring-like thermoelectric elements 22 coaxially arranged with air as an insulator sandwiched inbetween, wherein the ring-like thermoelectric element 22 is covered approximately entirely with electrodes 23a, 23b at its outer circumference surface 22a and inner circumference surface 22b, respectively, and generates electricity by temperature difference between the outer circumference surface 22a and the inner circumference surface 22b, a lead wire 31 electrically connecting the electrode 23a covered on the outer circumference surface 22a of one ring-like thermoelectric element 22 among the plurality of ring-like thermoelectric elements 22 to the electrode 23b covered on the inner circumference surface 22b of another ring-like thermoelectric element 22 adjacent to this one ring-like thermoelectric element 22, and a doubled cylindrical support unit 41 consisting of a SUS tube 42 whose outer circumference surface 42a supports the tubular element unit 21 and a SUS tube 43 whose inner circumference surface 43b supports the tubular element unit 21.
Owner:UNIVERSAL ENTERTAINMENT CORP

Thermoelectric element and thermoelectric module

The present invention provides a thermoelectric element comprising an electrically conductive substrate, a p-type thermoelectric material, and an n-type thermoelectric material; the p-type thermoelectric material being positioned on the substrate via an electrically conductive thermal buffer material, and the n-type thermoelectric material being positioned on the substrate via an electrically conductive thermal buffer material; wherein each thermoelectric material comprises a specific oxide and each electrically conductive thermal buffer material comprises an electrically conductive material having a thermal expansion coefficient between that of the thermoelectric material to which the thermal buffer material is bonded and that of the substrate. The invention also provides a thermoelectric module comprising a plurality of the thermoelectric elements. The thermoelectric element and the thermoelectric module have both a high thermoelectric conversion efficiency and excellent properties in terms of thermal stability, chemical durability, etc.
Owner:NAT INST OF ADVANCED IND SCI & TECH

Production Method of Thermoelectric Semiconductor Alloy, Thermoelectric Conversion Module and Thermoelectric Power Generating Device

The present invention provides a method for producing a half Heuslar alloy including quench-solidifying a molten alloy at a cooling rate of 1×102 to 1×103° C. / sec to produce a Heuslar alloy represented by the formula: ABC (wherein A and B each is at least one member selected from transition metals such as Fe, Co, Ni, Ti, V, Cr, Zr, Hf, Nb, Mo, Ta and W, and C is at least one member selected from Group 13 or 14 element such as Al, Ga, In, Si, Ge and Sn), and a high-performance thermoelectric power generating device using the thermoelectric semiconductor alloy.
Owner:SHOWA DENKO KK

Thermoelectric conversion material and thermoelectric conversion module

The present invention realizes a thermoelectric conversion material having excellent thermoelectric performance over a wide temperature range, and a thermoelectric conversion module providing excellent junctions between thermoelectric conversion materials and electrodes.The present invention provides an R-T-M-X-N thermoelectric conversion material that has a structure expressed by the following formula: RrTt−mMmXx−nNn (0<r≦1, 3≦t−m≦5, 0≦m≦0.5, 10≦x≦15, 0≦n≦2),where R represents three or more elements selected from the group consisting of rare earth elements, alkali metal elements, alkaline-earth metal elements, group 4 elements, and group 13 elements,T represents at least one element selected from Fe and Co,M represents at least one element selected from the group consisting of Ru, Os, Rh, Ir, Ni, Pd, Pt, Cu, Ag, and Au,X represents at least one element selected from the group consisting of P, As, Sb, and Bi, andN represents at least one element selected from Se and Te.
Owner:FURUKAWA COMPANY

Thermoelectric conversion device

The thermoelectric conversion efficiency of a thermoelectric conversion device is increased by increasing the figure of merit of a spin-Seebeck effect element.An inverse spin-Hall effect material is provided to at least one end of a thermal spin-wave spin current generating material made of a magnetic dielectric material so that a thermal spin-wave spin current is converted to generate a voltage in the above described inverse spin-Hall effect material when there is a temperature gradient in the above described thermal spin-wave spin current generating material and a magnetic field is applied using a magnetic field applying means.
Owner:NEC CORP +1

Thermoelectric conversion material and method of producing the same

A thermoelectric conversion material is formed of a polycrystal structure of crystal grains composed of a silicon-rich phase, and an added element-rich phase in which at least one type of added element is deposited at the grain boundary thereof, the result of which is an extremely large Seebeck coefficient and low thermal conductivity, allowing the thermoelectric conversion rate to be raised dramatically, and affording a silicon-based thermoelectric conversion material composed chiefly of silicon, which is an abundant resource, and which causes extremely low environmental pollution.
Owner:SUMITOMO SPECIAL METAL CO LTD

Exhaust heat recovery power generation device and automobile equipped therewith

An engine exhausts gas which is in turn exhausted through an exhaust pipe in a prescribed direction. A cooling water pump supplies cooling water to circulate a refrigerant through each of cooling water circulation paths. The cooling water circulation path includes a cooling water pipe arranged along the exhaust pipe to pass the cooling water. At stacks a plurality of thermoelectric power generation elements are attached to the exhaust pipe and the cooling water pipe successively in a direction from the upstream toward downstream of the exhaust gas. The cooling water pipe and the exhaust pipe pass the cooling water and the exhaust gas, respectively, in opposite directions so that the downstream stack has an increased difference in temperature between the exhaust pipe and the cooling water pipe, and the stacks provide power outputs having a reduced difference, and hence an increased total power output. Thus an exhaust heat recovery power generation device can provide increased thermoelectric conversion efficiency without complicated piping.
Owner:TOYOTA JIDOSHA KK

Thermoelectric Conversion Module, and Thermoelectric Power Generating Device and Method, Exhaust Heat Recovery System, Solar Heat Utilization System, and Peltier Cooling and Heating System, Provided Therewith

The thermoelectric conversion module is provided, comprising a plurality of thermoelectric elements, and respective thermoelectric elements are electrically connected by metal caps attached to both ends of each thermoelectric element. In addition, the metal cap may be integrally formed with electrodes on both ends of each thermoelectric element.
Owner:SHOWA DENKO KK

Thermoelectric energy conversion unit and tunnel-type furnace therewith

A thermoelectric energy conversion unit includes: a thermoelectric conversion module having plural thermoelectric conversion elements disposed away from each other; a heat receiving member; a cooling member, the cooling member and the heat receiving member holding the thermoelectric conversion module; and a non-oxidizing gas charged in a space formed between the heat receiving member and the cooling member.
Owner:HITACHI POWDERED METALS COMPANY +1

Computer with thermoelectric conversion

A computer with thermoelectric conversion uses a thermoelectric conversion module that connects between a heat generating device and a low temperature device to fully utilize the redundant heat generated by the computer. The thermoelectric conversion module converts heat to power based on a temperature difference between the heat generating device and the low temperature device. The power generated by the thermoelectric conversion module is then delivered to a load that can be activated by the power.
Owner:MICRO-STAR INTERNATIONAL

Thermoelectric conversion module and method of manufacturing the same

There is provided a thermoelectric conversion module comprising a first insulated substrate, a plurality of columnar p-type and n-type semiconductor thermoelectric transducers alternately arranged on the first insulated substrate, a second insulated substrate arranged so as to face the first insulation with interposition of the semiconductor thermoelectric transducers, first electrodes arranged between the first insulated substrate and the respective semiconductor thermoelectric transducers, and second electrodes arranged between the second insulated substrate and the respective semiconductor thermoelectric transducers, the first and second electrodes electrically connecting the p-type and n-type semiconductor thermoelectric transducers in series, and a glass film coated on the exposed surface of each first electrode at the first insulated substrate side and on a part of the exposed surfaces of the p-type and n-type semiconductor thermoelectric transducers directed from the first electrode to the second electrode.
Owner:KK TOSHIBA

Exhaust heat recovery system

In an exhaust heat recovery system, electric power generation efficiency of a thermoelectric conversion element can be improved, and warming-up of a catalyst can be completed early, without using a complicated device. The exhaust heat recovery system according to the invention includes an exhaust pipe in which exhaust gas discharged from an internal combustion engine flows; a catalyst which purifies the exhaust gas; a heat recovery portion which is fitted to the exhaust pipe, and which recovers heat contained in the exhaust gas; a thermoelectric conversion element which generates electric power using thermoelectric conversion; and a heat pipe which connects the heat recovery portion to the thermoelectric conversion element, and which transfers the heat recovered in the heat recovery portion to the thermoelectric conversion element. An operation starting temperature of the heat pipe is set so as to be higher than an activation temperature of the catalyst.
Owner:TOYOTA JIDOSHA KK

Thermoelectric Conversion System and of Increasing Efficiency of Thermoelectric Conversion System

The present invention relates to a thermoelectric conversion system for receiving heat by radiation from a heat source and an efficiency improving method of the thermoelectric conversion system, the system including at least one thermoelectric conversion module 5 having at least a pair of thermoelectric elements 2, a heat receiving zone 6 placed not to contact a heat source 3 for receiving heat by radiation from the heat source 3 and a radiating zone 7 positioned on an opposite side to the heat receiving zone 6 and cooled by a coolant 4, generating electric power by a temperature difference between the heat receiving zone 6 and the radiating zone 7, a continuous or divided heat receiving surface 18 formed by one or a plurality of surfaces facing the heat source 3 of the heat receiving zone 6, and each of the heat receiving surface 18 is given a different quantity of heat from the heat source 3, the system comprising the heat receiving surface 18 has a plurality of different emissivities according to the quantity of heat received from the heat source 3.
Owner:CENTRAL RESEARCH INSTITUTE OF ELECTRIC POWER INDUSTRY +1

Rare earth-doped semiconductor infrared radiation thick-film electronic paste and preparation method therefor

The present invention discloses rare earth-doped semiconductor infrared radiation thick-film electronic paste and a preparation method therefor. The electronic paste comprises, in percentage by weight, 10%-90% of an organic vehicle and 10%-90% of a functional phase. The organic vehicle comprises, in percentage by weight, 50%-95% of an organic solvent,1%-40% of a thickening agent, and 0%-5% of an organic additive. The functional phase comprises, in percentage by weight, 40%-95% of a rare earth-doped infrared radiation semiconductor material, 5%-60% of a conductive material, and 0%-20% of a functional additive. According to the electronic paste, the selecting range of a base material is wide, the heating temperature range is wide, the heating efficiency is high, the temperature of a heating body itself is low, and the bidirectional thermoelectric conversion can be achieved. The preparation method comprises: a, mixing the thickening agent, the organic additive and the organic solvent to prepare the organic vehicle; b, mixing and grinding the organic vehicle and the functional phase to prepare the electronic paste; c, printing the electronic paste on a substrate by means of screen printing, and performing curing or sintering to form a film.
Owner:DONGGUAN COREHELM ELECTRONICS MATERIAL TECH CO LTD

Liquid crystal projector

A liquid crystal projector includes a light modulating device, a cooling device, a dehumidification device, and a housing. The light modulating device forms an optical image by modulating light flux emitted from a light source based on image information. The cooling device cools air to be supplied to the light modulating device. The dehumidification device dehumidifies and dries air to be supplied to the corresponding cooling device. The housing includes a cooling medium flow path for circulating air among the light modulating device, the cooling device, and the dehumidification device. The cooling device includes a thermoelectric conversion material interposed between a pair of heat transmission plates arranged to face each other.
Owner:SEIKO EPSON CORP

Stacked Layer High Efficiency Solar Energy Collector

An apparatus for improving the efficiency and usability of a solar energy collection panel is provided. In one embodiment, the collection panel comprises a plurality of layers. The first layer is a photovoltaic layer that converts the solar energy into electricity. That layer is coupled to a thermoelectric conversion layer that sinks heat from the photovoltaic layer and generates electricity based on the temperature difference between the top and bottom of the layer. A fluid heating layer is then coupled to and sinks heat from the thermoelectric layer to heat up a fluid, e.g. air or water. Each of these layers is stacked together and placed above an insulation layer that supports the layers and thermally isolates them from the surrounding environment. In another embodiment, a flexible coiled solar energy collection panel is provided. In still another embodiment, a modular rail system is provided for simple and customizable installation.
Owner:TOTAL ENERGY RENEWABLE POWER SYST

Thermoelectric conversion element and thermoelectric conversion module

The present invention provides a thermoelectric element in which a thin film of p-type thermoelectric material and a thin film of n-type thermoelectric material, which are formed on an electrically insulating substrate, are electrically connected, in which the p-type thermoelectric material and the n-type thermoelectric material are selected from specific complex oxides with a positive Seebeck coefficient and specific complex oxides with a negative Seebeck coefficient, respectively. The present invention also provides a thermoelectric module using the thermoelectric element(s) and a thermoelectric conversion method. In the thermoelectric element of the present invention, since a p-type thermoelectric material and an n-type thermoelectric material are formed into a thin film on an electrically insulating substrate, the thermoelectric element of the invention can be formed on substrates having various shapes, thereby providing thermoelectric elements having various shapes.
Owner:NAT INST OF ADVANCED IND SCI & TECH

Fuel cell vehicle thermal management system

The invention discloses a fuel cell whole vehicle thermal management system, which is characterized by comprising a power electronic cooling system, a fuel cell cooling system, a power cell thermal management system and an air conditioning system. One side of the thermoelectric conversion device and the power battery thermal management system form a power battery coolant circuit, and the other side is connected in series with the coolant circuit of the power electronic cooling system; The thermoelectric device is arranged in the air conditioning system and is in contact with the coolant flowing out of the air conditioning compressor of the air conditioning system and the coolant flowing through the cab evaporator or the battery refrigeration exchanger, respectively. The whole heat management system of the fuel cell vehicle integrates different heat management subsystems of the whole vehicle and realizes cooling of the power electronic system by using the semiconductor material throughheat conversion mode; the whole heat management system of the fuel cell vehicle integrates different heat management subsystems of the whole vehicle. In the same way, the regenerative effect of the air conditioning system is realized, the liquid impact phenomenon of the air conditioning compressor is avoided, and the energy efficiency ratio and the service life of the air conditioning system are improved.
Owner:CHINA FIRST AUTOMOBILE

Thermoelectric Conversion Module, Heat Exchanger Using Same, and Thermoelectric Power Generating Apparatus

A thermoelectric conversion module (10) comprises first and second electrode members (13, 14), and thermoelectric elements (11, 12) arranged between the electrode members (13, 14). The thermoelectric elements (11, 12) are made of a half-Heusler material and are electrically and mechanically connected to the first and second electrode members (13, 14) via bonding parts (17). The bonding parts (17) include a bonding material which contains at least one selected from Ag, Cu and Ni as a main component and at least one of active metal selected from Ti, Zr, Hf, Ta, V and Nb in a range from 1 to 10% by mass.
Owner:KK TOSHIBA +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products