Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

421 results about "High saturation magnetization" patented technology

High saturation magnetization intensity Fe-based nanocrystalline magnetically soft alloy material and preparation method thereof

The invention relates to a high saturation magnetization intensity Fe-based nanocrystalline magnetically soft alloy material and a preparation method thereof. The high saturation magnetization intensity Fe-based nanocrystalline magnetically soft alloy material is a FexSiyBzPaCub alloy comprising ferrum, silicon, boron, phosphorus and copper, wherein x, y, z, a and b in the formula respectively represent atom percentage content of each corresponding component, x=70-90%, y=1-15%, z=1-20 %, a=1-20% and b=0.1-1%, and x+y+z+a+b=100%; the microstructure of the Fe-based nanocrystalline magnetically soft alloy is as follows: a body-centered cubic Alpha-Fe(Si) nanocrystalline phase with the size of 1-35nm and an amorphous phase rich in phosphorus and boron coexist, and the amorphous phase is the basic phase. The preparation method comprises steps of: preparing proportioned raw materials into an alloy ingot, preparing into amorphous alloy and carrying out other procedures to obtain the high saturation magnetization intensity Fe-based nanocrystalline magnetically soft alloy. The invention can greatly enhance the saturation magnetization intensity of the nanocrystalline magnetically soft alloy, maintain lower coercivity and effectively reduce cost of raw materials simultaneously.
Owner:朗峰新材料启东有限公司

High-thermal-stability insulated coating treatment method of metal soft magnetic composite material

The invention discloses a high-thermal-stability insulated coating treatment method of a metal soft magnetic composite material. The method comprises the following steps: (1) sieving metal magnetic powder, and performing particle size distribution; (2) performing insulated coating on the distributed metal magnetic powder by using a sol-gel method, and then drying the metal magnetic powder; (3) uniformly mixing the dried magnetic powder and an adhesive, adding a release agent, and performing dry pressing to obtain a magnetic ring; (4) performing heat preservation on the magnetic ring in protective atmosphere for 0.5-2 h, and then performing air cooling and spraying to obtain a target product. Composite powder prepared by using the sol-gel method is coated uniformly and densely, and a coating layer is controllable in thickness, and high thermal stability, high resistivity, high saturation magnetization intensity, an excellent magnetic property and an excellent mechanical property are achieved; the surface of the metal magnetic powder is uniformly coated with an Al2O3 insulated layer by using the sol-gel method, so that the coating effect is superior to that of an existing method; the method is high in operability and facilitates batch production; the magnetic core loss of the soft magnetic composite material is greatly reduced.
Owner:ZHEJIANG UNIV

Fe@Fe3O4 nanoparticles having photothermal function, and preparation method and application thereof

The invention discloses Fe@Fe3O4 nanoparticles having a photothermal function, and a preparation method and an application thereof, and belongs to the field of medical science materials. The preparation method is significantly characterized by comprising: firstly, utilizing octadecene as a solvent, utilizing Fe(CO)5 as an iron source, utilizing oleyl amine as a surfactant and a stabilizer, and preparing an Fe nanomaterial having good dispersity by high temperature pyrolysis; sequentially, adding (CH3)3NO at the high temperature for oxidization to form one layer of Fe3O4 shell on the surface layer of each Fe nanoparticle, and then improving water solubility by a ligand exchange method to obtain the Fe@Fe3O4 composite material as a photothermal reagent and having high magnetization strength. The composite material has the advantages of uniform particle size, high saturation magnetization strength, and controllable morphology, and has excellent dispersion and excellent stability in aqueous solution. The reaction time is short, the raw materials are easy to get, and operation processes are convenient. On the basis of the raw materials, the Fe@Fe3O4 nanoparticles are developed to connect PEG to the surface of the material, so that the Fe@Fe3O4 nanoparticles can be applied to biological bodies. The invention provides the application of the Fe@Fe3O4 nanoparticles in the field of tumor photothermal therapy.
Owner:SHANGHAI NORMAL UNIVERSITY

Preparation method for superparamagnetism ferroferric oxide sub-micron hollow microsphere

The invention relates to a preparation method for a superparamagnetism ferroferric oxide sub-micron hollow microsphere. The preparation method comprises the following steps: 1) taking a reducing agent, an iron source and an alkali source, and dissolving into distilled water; 2) dissolving a surfactant into a solution obtained from step 1); 3) introducing a solution obtained from step 2) into a reaction kettle, reacting in a drying oven, performing natural cooling to room temperature for seasoning, water washing, alcohol washing, and drying in a vacuum drying box, so that the superparamagnetism ferroferric oxide sub-micron hollow microsphere is obtained. The preparation method has the following good effects: 1) according to the invention, the ferroferric oxide sub-micron hollow microsphere is compounded, and has superparamagnetism, high saturation magnetization and excellent oxidation resistance; 2) dispersing agents such as PEG (polyethylene glycol) and PVP (polyvinylpyrrolidone) are adopted to solve the problem of magnetic microsphere agglomeration, so that the ferroferric oxide sub-micron hollow microsphere with uniform particle size is obtained; 3) according to the invention, adopted raw materials is cheap, so that cost is minimized.
Owner:WUHAN UNIV OF TECH

Inhomogeneous nucleation insulation coating processing method of metal soft magnetic composite material

ActiveCN104028747APrecise thickness controlPrecise control of its chemical compositionInorganic material magnetismInsulation layerSpray coating
The invention discloses an inhomogeneous nucleation insulation coating processing method of a metal soft magnetic composite material. The method includes the following steps that (1) particle size distribution is conducted on metal magnetic powder after sieving is conducted; (2) insulation coating is conducted on the distributed metal powder through an inhomogeneous nucleation method, and then the metal powder is dried; (3) the dried magnetic powder and a binding agent are evenly fixed, a release agent is added to conduct dry pressing and forming, and the mixture is pressed to form blank samples; (4) heat preservation is conducted on the blank samples for half an hour to two hours in a protective atmosphere, and air cooling and spray coating are conducted to obtain the target product. The composite powder prepared through the inhomogeneous nucleation method is even and compact in coating and controllable in coating layer thickness, and has high oxidation resistance, high resistivity, high saturation magnetization intensity, the good magnetic property and the good mechanical property; the surface of the metal magnetic powder is evenly coated with an A12O3 insulation layer through the inhomogeneous nucleation method, so that the coating effect is superior to that of an existing method, the operability is high and volume production is facilitated.
Owner:ZHEJIANG UNIV

Preparation method of superparamagnetic cyclodextrin composite particles

The invention relates to a preparation method of superparamagnetic cyclodextrin composite particles. The preparation method comprises the following steps: firstly preparing a magnetic nanometer particle mixed system, and then, adding cyclodextrin powder; adding the cyclodextrin powder to the obtained magnetic nanometer particle mixed system containing a small amount of water and adjusting the pH value of the magnetic nanometer particle mixed system to be larger than 10 by an aqueous alkali; dispersing the cyclodextrin powder under ultrasound for 5-30 minutes so as to dissolve cyclodextrin; and obtaining the superparamagnetic cyclodextrin composite particles by compounding, increasing the temperature of the reaction system to 40-80 DEG C, fully stirring the reaction system and reacting for 3-20 hours before ending, and magnetically separating and centrifugating or dialyzing the system to be neutral so as to obtain the magnetic cyclodextrin composite particles. The invention aims to utilize active groups of the cyclodextrin and the magnetic nanometer particles and does not need adding a coupling reagent so as to be directly compounded into the magnetic composite particles which have high biological compatibility and saturation magnetization intensity and can slowly release a plurality of medicaments.
Owner:XIAN GOLDMAG NANOBIOTECH

Mn element and Zn element-doped super-paramagnetic ferrite nanoparticles and preparation method thereof

ActiveCN102786299AControlling Saturation MagnetizationRegular shapeMaterial nanotechnologyHexadecaneActive agent
The invention discloses Mn element and Zn element-doped super-paramagnetic ferrite nanoparticles and a preparation method thereof. Manganese element is added or manganese element and zinc element are simultaneously added into a face-centered cubic crystal structure of ferriferrous oxide nanoparticles by using a method of decomposing metal precursor compound at a high temperature; the magnetic performance of the prepared super-paramagnetic nanoparticles is improved by changing the doping amount and the distribution of the metal element; and primarily, the saturation magnetization is improved. The preparation method specifically comprises the following steps of: mixing acetylacetones of Fe and Mn as well as Zn with 1,2-hexadecanol; performing high-temperature decomposition in high-boiling-point solvent by taking oleic acid and oleylamine as surfactants; or performing high-temperature decomposition on composite oleate of Fe, Mn and Zn by taking the oleic acid as the surfactant; heating and preserving heat in stages in argon or nitrogen protective atmosphere to guarantee growth of nanoparticle nuclear; and cooling to room temperature after reaction is finished and settling and centrifuging to finally obtain the super-paramagnetic ferrite nanoparticles which are uniformly dispersed in normal hexane solution.
Owner:SICHUAN UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products