Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1196 results about "Vehicle acceleration" patented technology

Acceleration is the rate at which a car or other vehicle can increase its speed, often seen in terms of the time that it takes to reach a particular speed.

Method and arrangement in a hybrid vehicle for improving battery state-of-charge control and minimizing driver perceptible disturbances

Method for minimizing driver perceptible drive train disturbances during take-off in a hybrid electric vehicle when maximized power is often desired is disclosed. The method includes sensing an actual state-of-charge (SOC) value of a battery in a hybrid electric vehicle and a traveling velocity of the vehicle during take-off operation. The sensed actual SOC value is compared with a SOC reference value and computing a delta SOC value as a difference therebetween. A velocity-based SOC calibration factor is looked up that corresponds to the traveling velocity of the vehicle. A combination is utilized of the delta SOC value and the SOC calibration factor as a SOC feedback engine speed control instruction to an engine controller of the hybrid electric vehicle. A driver's desired vehicular acceleration is sensed based on accelerator position. Maximum possible engine power generatable at the sensed vehicle speed is determined, as is a required power value from the power train of the vehicle to meet the driver's desired vehicular acceleration. The maximum possible engine power generatable at the sensed vehicle speed is compared with the required power value and computing a delta power train requirement value as a difference therebetween. A velocity-based and accelerator position-based power calibration factor is looked-up that corresponds to the traveling velocity of the vehicle and the accelerator position. A combination of the delta power train requirement value and the power calibration factor is utilized as a power requirement feed-forward engine speed control instruction to an engine controller of the hybrid electric vehicle.
Owner:VOLOVO CAR CORP

Vehicle and vehicle hill starting control method and hill starting control apparatus

The invention discloses a vehicle and a vehicle hill starting control method and a hill starting control apparatus, wherein the method comprises: acquiring vehicle speed, an accelerator opening degree, engine rotation speed, clutch shaft speed, road slope and clutch output torque; calculating vehicle acceleration torque and vehicle resistance torque based on the clutch output torque, the road slope and the clutch shaft speed; calculating the target vehicle speed based on the road slope and the accelerator opening degree; calculating the target acceleration torque of a vehicle based on the difference value between the calculated target vehicle speed and the vehicle speed, the road slope and the accelerator opening degree; calculating the torque that an engine needs and the clutch target torque based on the target acceleration torque of the vehicle, the vehicle resistance torque and the engine rotation speed; and controlling the engine output torque to reach the torque that the engine needs and the clutch output torque reach the clutch target acceleration torque so as to make the vehicle speed reach the target vehicle speed and the vehicle acceleration torque reach the target acceleration torque of the vehicle, thus controlling the vehicle speed and the vehicle acceleration speed and rapidly realizing the intention of a driver.
Owner:BYD CO LTD

Noise source recognition method for vehicle acceleration noise

The invention relates to a method for indentifying a noise source that produces noise when a vehicle accelerates, and belongs to the technical field of vehicle noise control. The method comprises the following steps: when the vehicle accelerates or travels at a uniform speed, the noise source signal, the vibration source signal, the speed signal, the response point sound pressure signal, the vehicle position signal and the like are collected; the transfer function matrix from the noise source and the vibration source to the response point is calculated; the changing response point sound pressure during the process of acceleration is synthesized and computed; and the sensitivity and the contribution degree of each noise source and vibration source are calculated. The invention has the following advantages: the noise source signal, the vibration source signal, the vehicle travelling state signal, and the ground response point sound pressure signal, which are collected during the running of the vehicle, can be utilized for accurately identifying the noise source that produces noise during the acceleration; and the quantitative relationship between the response point noise signal and each noise source is obtained and can provide a reliable basis for the reduction of noise produced by the acceleration of a running vehicle.
Owner:TSINGHUA UNIV

Dynamic load simulating device and method for automobile power system test

The invention relates to a dynamic load simulating device and a dynamic load simulating method for an automobile power system test, and belongs to the technical field of vehicle power system tests. The dynamic load simulating device comprises a control computer, a dynamometer controller, a frequency converter, an alternating current (AC) power dynamometer and a torque flange with a controller. A virtual automobile model-based control algorithm is adopted, a virtual automobile model is driven by an actual measurement torque, and the simulation of the rolling resistance, wind resistance and the inertia resistance of a vehicle is realized under the conditions of not calculating angular acceleration of the dynamometer. The dynamic load simulating device and the dynamic load simulating method have high stability and high simulation precision, are favorable for shortening the development cycle of an automobile power system and providing convenient test environment for the development of the power system. A process that the vehicle acceleration is acquired by differentiating the rotation speed of the automobile power system is avoided in the calculation process, and a phenomenon that accurate differential values are difficult to acquire due to relatively large noise caused by the process of differentiating the rotation speed is prevented.
Owner:TSINGHUA UNIV

Automotive control unit programmed to estimate road slope and vehicle mass, vehicle with such a control unit and corresponding program product

Automotive electronic control unit programmed to realtime estimate either or both of vehicle mass and road slope, wherein; a. road slope, is estimated; a1. when vehicle is considered stopped based on an accelerometer signal indicative of vehicle acceleration, wherein the vehicle is considered stopped in the presence of substantially zero values of a speed signal indicative of vehicle speed, and a2. when vehicle is in rectilinear and curvilinear motion by implementing a road slope observer based on a linear Kalman filter, which is designed to: a21. operate based on signals indicative of vehicle speed and acceleration, and a22. compensate for accelerometric disturbances due to; a221. vehicle static pitch resulting from vehicle load distribution, and a222. vehicle dynamic pitch due to acceleration to which vehicle is subjected during motion, and a223. accelerometric disturbance components due to vehicle lateral dynamics; b. vehicle mass is estimated: b1. when vehicle is in motion, and b2. based on a recursive least square algorithm with forgetting factor, and b3. based on an accelerometric signal indicative of vehicle acceleration, on a vehicle speed signal, and other signals representing a vehicle propulsive/resistive torque, and b4. at different low gears, to provide a mass estimation and an associated variance for each gear, and b5. based on mass estimations and corresponding variances for each gear, and b6. compensating for accelerometer disturbances due to: b61, vehicle dynamic pitch; and b62. accelerometrie disturbance components due to vehicle lateral dynamics; and b7. minimizing uncertainties on propulsive/resistive torque due to gear efficiency and roiling resistance.
Owner:CENT RICERCHE FIAT SCPA
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products