Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2149results about How to "Improve maneuverability" patented technology

ARM (advanced RISC (reduced instruction set computer) machines) and FPGA (field-programmable gate array) based navigation and flight control system for unmanned helicopter

The invention discloses an ARM (advanced RISC (reduced instruction set computer) machines) and FPGA (field-programmable gate array) based navigation and autonomous flight control system for an unmanned helicopter. The system comprises a PC (personal computer), an integrated navigation subsystem, a power supply module and controllers, wherein the integrated navigation subsystem comprises a sensor group; the sensor group comprises a GPS (global positioning system), a gyroscope, an accelerometer, a magnetoresistive sensor, a barometric altimeter and a sonar altimeter; the controllers include a main controller and a steering engine controller; the main controller adopts an ARM microprocessor to operate the integrated navigation algorithm and flight control PID (proportion integration differentiation) algorithm and simultaneously completes data acquisition of the GPS, the barometric altimeter and the sonar altimeter; and the steering engine controller adopts an FPGA to realize data acquisition of the gyroscope, the accelerometer and the magnetoresistive sensor and transfers the data to the main controller via a concurrent bus to carry out attitude calculation and control operation on the unmanned helicopter. With the unmanned helicopter as a carrier, the hardware environment of a whole set of flight control system integrating study of the aircraft navigation and control theory problem, data acquisition, information transfer and embedded control is set up.
Owner:TIANJIN UNIV

Longitudinal, transverse and vertical force integrated control optimization method for electric vehicles driven by hub

ActiveCN109204317AImprove handling stabilityImprove road tracking performanceKinematicsElectronic control system
A longitudinal, transverse and vertical force integrated control optimization method for electric vehicles driven by hub belongs to that technical field of electric vehicle control. The object of theinvention is to adopt a layered cooperative control structure so as to solve the four shortcomings existing in the prior art control system of a longitudinal, lateral and vertical force integrated control optimization method of an electric vehicle driven by a hub. The invention brings the relationship between vehicle resultant force and four-wheel tire force into the vehicle body six-degree-of-freedom equation to obtain the expected values of vehicle kinematics control target longitudinal speed, lateral speed, vertical speed, pitch angle, roll angle and yaw angle, thereby optimizing the vehicle kinematics control target. The layered longitudinal, lateral and vertical force unified optimal distribution integrated control method eliminates the conflict between different chassis electronic control systems and enhances the complementarity, and comprehensively improves vehicle handling stability and vehicle driving posture, which is embodied in the improvement of vehicle road tracking performance, safety, maneuverability, stability and comfort.
Owner:JILIN UNIV

Robust adaptive underactuated surface ship path tracking control method based on fuzzy unknown observer

The invention discloses a robust adaptive underactuated surface ship path tracking control method based on a fuzzy unknown observer. The robust adaptive underactuated surface ship path tracking control method based on the fuzzy unknown observer comprises the following steps that an unmanned ship kinematics and dynamics model is established; a path tracking error dynamic state is built; a line-of-sight guidance law with variable speed is proposed; a fuzzy logic system is established; and a controller based on the fuzzy unknown observer is designed. In a guidance subsystem, the line-of-sight guidance law with the variable speed is proposed, the control flexibility and robustness of a guidance system are improved, and the position error is enabled to be asymptotically stabilized to zero; andin a control subsystem, the fuzzy unknown disturbance observer is designed to estimate the unknown disturbance quickly and accurately, and effective compensation is carried out on the designed speed and a heading controller, so that the tracking error between a guidance signal and actual quantity is asymptotically stabilized back to zero. The involved algorithm framework can enable a whole closed-loop system to be globally asymptotically stabilized, and the control flexibility and tracking accuracy of a path tracking control system are greatly improved.
Owner:DALIAN MARITIME UNIVERSITY

Maneuverability improving and controlling method based on distributively driven electric vehicle

The invention relates to a maneuverability improving and controlling method based on a distributively driven electric vehicle. The method includes steps: acquisition of an ideal differential power-assisted steering curve, namely acquiring the differential power-assisted steering curve according to a longitudinal vehicle speed and a steering wheel torque; calculation of a reference yaw velocity, namely calculating an ideal yaw velocity target value according to a steering wheel turn angle and vehicular running parameters, and taking the calculated ideal yaw velocity target value as the reference yaw velocity; calculation of an additional yaw torque, namely tracking the calculated reference yaw velocity in real time, calculating the additional yaw torque through feedforward control and feedback control; longitudinal force distribution, namely distributing driving torques of front-axle left and right wheels and rear-axle left and right wheels according to the ideal differential power-assisted steering curve and the additional yaw torque. Compared with the prior art, the method has the advantages that overall yaw velocity response is improved while operating burden is relieved for a driver, and accordingly maneuverability of the whole vehicle is effectively improved.
Owner:TONGJI UNIV

Four-wheeled independently-driven electric automobile stability control method and system

InactiveCN104443022AGuaranteed uptimeState errors are eliminated or reducedSteering linkagesAutomatic steering controlTurn angleSteering wheel
The invention discloses a four-wheeled independently-driven electric automobile stability control method and system. The technical problem that an ARS safety system and a DYC safety system of an electric automobile in the prior art work simultaneously and accordingly coupling and whole-automobile performance reduction are caused is solved. The four-wheeled independently-driven electric automobile stability control method comprises the steps of obtaining a turn angle of a steering wheel and the speed of an automobile when the automobile turns; obtaining the variable-transmission ratio of the steering wheel to the turn angles of rear wheels based on an automobile speed and automobile speed transmission ratio mathematical model; obtaining the turn angle of front wheels based on the turn angle of the steering wheel; obtaining an ideal state of the automobile based on an ideal variable-transmission ratio model of the automobile, the speed of the automobile and the turn angles of the front wheels; obtaining an actual state of the automobile based on an electric automobile non-linear eight-degree of freedom model, the speed of the automobile and the turn angles of the front wheels; obtaining errors of the actual state of the automobile compared with the ideal state of the automobile; controlling, eliminating or decreasing the errors of the state of the automobile through the ARS and DYC safety systems or the ARS safety system respectively in a nonlinear area or a linear area where the automobile works so as to achieve stable operation of the automobile.
Owner:SHENZHEN POLYTECHNIC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products