Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1573 results about "Electromagnetic pulse" patented technology

An electromagnetic pulse (EMP), also sometimes called a transient electromagnetic disturbance, is a short burst of electromagnetic energy. Such a pulse's origin may be a natural occurrence or man-made and can occur as a radiated, electric, or magnetic field or a conducted electric current, depending on the source.

System and method for performing impact loading on micro test piece and measuring dynamic mechanical property

InactiveCN102135480ASolve the study of dynamic mechanical properties at high strain ratesLaunch fastStrength propertiesFerroelectric thin filmsStress–strain curve
The invention relates to a system and a method for performing impact loading on a micro test piece and measuring dynamic mechanical property. The method comprises the following steps of: instantly accelerating a bullet by using an electromagnetic pulse launch technology and launching the bullet at high speed; transmitting a stretching stress wave generated by collision of the bullet to the micro test piece by using a separated Hopkinson bar technology so as to generate the impact loading on the micro test piece; recording strain data of an input bar and an output bar, and acquiring an enlarged surface dynamic deformation image of the micro test piece; analyzing and obtaining a stress strain curve of the micro test piece subjected to the impact loading having different strain rates; and analyzing the surface dynamic deformation image of the micro test piece and obtaining a distribution of a bidimensional displacement field and a strain field during dynamic impact loading of the micro test piece. By the system and the method, the problem of research on the dynamic mechanical property of a micro electro mechanical system (MEMS), and membrane materials such as piezoelectric thin films, ferroelectric thin films and the like is solved.
Owner:BEIJING INSTITUTE OF TECHNOLOGYGY

Single-channel UWB-based radar type life detection instrument for multi-target detection

InactiveCN102008291AThe target's weak vital signs are enhancedDiagnostic recording/measuringSensorsIntegratorAudio power amplifier
The invention discloses a single-channel ultra-wide bandwidth (UWB)-based radar type life detection instrument for multi-target detection. The life detection instrument comprises a UWB biologic radar front end and a calculating unit, wherein the UWB biologic radar front end comprises a transmitting antenna, a receiving antenna, a pulse oscillator, an electromagnetic pulse generator and a sampling integrator; the pulse oscillator generates a pulse signal; the signal triggers the electromagnetic pulse generator to generate a narrow pulse and radiates the narrow pulse out through the transmitting antenna; a reflected signal is transmitted to the sampling integrator through the receiving antenna; a pulse signal generated by the pulse oscillator simultaneously generates a distance gate through a delay circuit and a distance gate generator to select a received signal; the signal passes through a sampling integration circuit; a weak signal is detected after accumulation, amplified and filtered by an amplifier and a filter, sampled by a high-speed analogue / digital (A / D) acquisition card and transmitted to the calculating unit; and the acquired signal is analyzed by the calculating unit to extract life information and each target distance of multiple human targets.
Owner:FOURTH MILITARY MEDICAL UNIVERSITY

Device and method for vehicular invisible road illumination and imaging

A device and method for vehicular invisible road illumination and imaging is provided. The device includes invisible for human eye and precisely synchronized for all vehicles pulsed laser or nonlaser sources of light to illuminate the road. The design and method of the invention involves providing a low probability of being blinded by oncoming vehicles and illumination of the road by light pulses which are shorter than the time which is necessary for the light pulse to travel the illuminated distance observed by the driver. Using a timing signal acquired from at least one satellite global positioning system, the period between the illuminating pulses is set the same for all vehicles with a high level of precision. The period between the illuminating pulses is divided into a predetermined number of time zones with a predetermined duration for each zone. Each predetermined time zone is assigned to a predetermined group of vehicles, for example, for military, government, law enforcement, ambulance, fire rescue, trucks, luxury vehicles, small, large vehicles etc. In order to further decrease the probability of being blinded by oncoming vehicles and also to reduce the necessary pulse energy of the illumination laser, the imaging system uses gated, spectrally selective imaging detectors with a luminosity-resolving power product at least 104 cm2 Sr. To increase the reliability for the whole system, especially for the most demanding types of vehicles such as police, ambulance and fire rescue, an additional improvement is included. For these purposes an additional generator of triggering pulse is included which illuminates an electromagnetic pulse of a different frequency from that which is used to illuminate the road. This additional triggering pulse is generated prior to the pulse which illuminates the road with a predetermined time difference, precisely set for all vehicles.
Owner:MATVEEV OLEG

System and method for detecting and estimating the direction of near-stationary targets in monostatic clutter using phase information

A system and method for detecting a target. The inventive method includes the steps of receiving a complex return signal of an electromagnetic pulse having a real and an imaginary component; extracting from the imaginary component information representative of the phase component of the return signal; and utilizing the phase component to detect the target. Specifically, the phase components are those found from the complex range-Doppler map. More specific embodiments further include the steps of determining a power spectral density of the phase component of the return signal; performing a cross-correlation of power spectral density of the phase component of the return signal between different antenna-subarray (quadrant channels); and averaging the cross-correlated power spectral density of the low frequency components. In an alternative embodiment, the cross-correlation is performed on the phase component of the range-Doppler map directly. This signal can then be averaged to potentially provide improved detection of targets. The cross-correlations of the power spectral densities derived from the complex valued range-Doppler map are then used to detect the target in the presence of monostatic clutter. An additional teaching relates to a utilization of the phase component to ascertain a direction of the target and thereby effect target tracking as well as target detection.
Owner:RAYTHEON CO
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products