Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

73 results about "Molecular wire" patented technology

Molecular wires (or sometimes called molecular nanowires) are molecular chains that conduct electric current. They are the proposed building blocks for molecular electronic devices. Their typical diameters are less than three nanometers, while their lengths may be macroscopic, extending to centimeters or more.

Demultiplexer for a molecular wire crossbar network (MWCN DEMUX)

A demultiplexer for a two-dimensional array of a plurality of nanometer-scale switches (molecular wire crossbar network) is disclosed. Each switch comprises a pair of crossed wires which form a junction where one wire crosses another and at least one connector species connecting said pair of crossed wires in said junction. The connector species comprises a bi-stable molecule. The demultiplexer comprises a plurality of address lines accessed by a first set of wires in the two-dimensional array by randomly forming contacts between each wire in the first set of wires to at least one of the address lines. The first set of wires crosses a second set of wires to form the junctions. The demultiplexer solves both the problems of data input and output to a molecular electronic system and also bridges the size gap between CMOS and molecules with an architecture that can scale up to extraordinarily large numbers of molecular devices. Further, the demultiplexer is very defect tolerant, and can work despite a large number of defects in the system.
Owner:HEWLETT-PACKARD ENTERPRISE DEV LP

Molecular-wire crossbar interconnect (MWCI) for signal routing and communications

A molecular-wire crossbar interconnect for signal routing and communications between a first level and a second level in a molecular-wire crossbar is provided. The molecular wire crossbar comprises a two-dimensional array of a plurality of nanometer-scale switches. Each switch is reconfigurable and self-assembling and comprises a pair of crossed wires which form a junction where one wire crosses another and at least one connector species connecting the pair of crossed wires in the junction. The connector species comprises a bi-stable molecule. Each level comprises at least one group of switches and each group of switches comprises at least one switch, with each group in the first level connected to all other groups in the second level in an all-to-all configuration to provide a scalable, defect-tolerant, fat-tree networking scheme. The primary advantage is ease of fabrication, because an active switch is formed any time two wires cross. This saves tremendously on circuit area (a factor of a few times ten), since no other wires or ancillary devices are needed to operate the switch or store the required configuration. This reduction of the area of a configuration bit and its switch to just the area of two crossing wires is a major advantage in constructing a defect-tolerant interconnect network.
Owner:HEWLETT PACKARD CO +1

Molecular wire injection sensors

Disclosed is a sensor for sensing the presence of an analyte component without relying on redox mediators. This sensor includes (a) a plurality of conductive polymer strands each having at least a first end and a second end and each aligned in a substantially common orientation; (b) a plurality of molecular recognition headgroups having an affinity for the analyte component and being attached to the first ends of the conductive polymer strands; and (c) an electrode substrate attached to the conductive polymer strands at the second ends. The electrode substrate is capable of reporting to an electronic circuit reception of mobile charge carriers (electrons or holes) from the conductive polymer strands. The electrode substrate may be a photovoltaic diode.
Owner:KEENSENSE

Molecular wire crossbar flash memory

A nano-scale flash memory comprises: (a) source and drain regions in a plurality of approximately parallel first wires, the first wires comprising a semiconductor material, the source and drain regions separated by a channel region; (b) gate electrodes in a plurality of approximately parallel second wires, the second wires comprising either a semiconductor material or a metal, the second wires crossing the first wires at a non-zero angle over the channel regions, to form an array of nanoscale transistors; and (c) a hot electron trap region at each intersection of the first wires with the second wires. Additionally, crossed-wire transistors are provided that can either form a configurable transistor or a switch memory bit that is capable of being set by application of a voltage. The crossed-wire transistors can be formed in a crossbar array.
Owner:HEWLETT-PACKARD ENTERPRISE DEV LP

Molecular wire injection sensors

Disclosed is a sensor for sensing the presence of an analyte component without relying on redox mediators. This sensor includes (a) a plurality of conductive polymer strands each having at least a first end and a second end and each aligned in a substantially common orientation; (b) a plurality of molecular recognition headgroups having an affinity for the analyte component and being attached to the first ends of the conductive polymer strands; and (c) an electrode substrate attached to the conductive polymer strands at the second ends. The electrode substrate is capable of reporting to an electronic circuit reception of mobile charge carriers (electrons or holes) from the conductive polymer strands. The electrode substrate may be a photovoltaic diode.
Owner:KEENSENSE

Molecular wire crossbar flash memory

A nano-scale flash memory comprises: (a) source and drain regions in a plurality of approximately parallel first wires, the first wires comprising a semiconductor material, the source and drain regions separated by a channel region; (b) gate electrodes in a plurality of approximately parallel second wires, the second wires comprising either a semiconductor material or a metal, the second wires crossing the first wires at a non-zero angle over the channel regions, to form an array of nanoscale transistors; and (c) a hot electron trap region at each intersection of the first wires with the second wires. Additionally, crossed-wire transistors are provided that can either form a configurable transistor or a switch memory bit that is capable of being set by application of a voltage. The crossed-wire transistors can be formed in a crossbar array.
Owner:HEWLETT-PACKARD ENTERPRISE DEV LP

Methods of producing carbon nanotubes using peptide or nucleic acid micropatterning

InactiveUS20050151126A1Facilitates a predominantly 5ā€²-attachmentMaterial nanotechnologyNanoinformaticsMolecular wireDouble stranded
The methods, apparatus and systems disclosed herein concern ordered arrays of carbon nanotubes. In particular embodiments of the invention, the nanotube arrays are formed by a method comprising attaching catalyst nanoparticles 140, 230 to polymer 120, 210 molecules, attaching the polymer 120, 210 molecules to a substrate, removing the polymer 120, 210 molecules and producing carbon nanotubes on the catalyst nanoparticles 140, 230. The polymer 120, 210 molecules can be attached to the substrate in ordered patterns, using self-assembly or molecular alignment techniques. The nanotube arrays can be attached to selected areas 110, 310 of the substrate. Within the selected areas 110, 310, the nanotubes are distributed non-randomly. Other embodiments disclosed herein concern apparatus that include ordered arrays of nanotubes attached to a substrate and systems that include ordered arrays of carbon nanotubes attached to a substrate, produced by the claimed methods. In certain embodiments, provided herein are methods for aligning a molecular wire, by ligating the molecular wire to a double stranded DNA molecule.
Owner:INTEL CORP

Process for attaching molecular wires and devices to carbon nanotubes and compositions thereof

The invention incorporates new processes for the chemical modification of carbon nanotubes. Such processes involve the derivatization of multi- and single-wall carbon nanotubes, including small diameter (ca. 0.7 nm) single-wall carbon nanotubes, with diazonium species. The method allows the chemical attachment of a variety of organic compounds to the side and ends of carbon nanotubes. These chemically modified nanotubes have applications in polymer composite materials, molecular electronic applications, and-sensor devices. The methods of derivatization include electrochemical induced reactions, thermally induced reactions (via in-situ generation of diazonium compounds or pre-formed diazonium compounds), and photochemically induced reactions. The derivatization causes significant changes in the spectroscopic properties of the nanotubes. The estimated degree of functionality is ca. 1 out of every 20 to 30 carbons in a nanotube bearing a functionality moiety. Such electrochemical reduction processes can be adapted to apply site-selective chemical functionalization of nanotubes. Moreover, when modified with suitable chemical groups, the derivatized nanotubes are chemically compatible with a polymer matrix, allowing transfer of the properties of the nanotubes (such as, mechanical strength or electrical conductivity) to the properties of the composite material as a whole. Furthermore, when modified with suitable chemical groups, the groups can be polymerized to form a polymer that includes carbon nanotubes.
Owner:RICE UNIV

Molecular-wire-based restorative multiplexer, and method for constructing a multiplexer based on a configurable, molecular-junction-nanowire crossbar

A method for configuring any m-to-n multiplexer from a molecular-junction-nanowire crossbar, and m-to-n multiplexers configured according to the disclosed method. In the described embodiments, a complementary / symmetry molecular-junction-nanowire crossbar is employed, with input nanowire signal lines intersecting certain relatively high-voltage narrow nanowires via nFET devices and intersecting grounded nanowires via pFET devices. The relatively high-voltage and grounded nanowires are, in turn, selectively coupled to one or more output nanowire signal lines.
Owner:VALTRUS INNOVATIONS LTD +1

Sensing devices from molecular electronic devices

The present invention generally relates to the fabrication of molecular electronics devices from molecular wires and Single Wall Nanotubes (SWNT). In one embodiment, the cutting of a SWNT is achieved by opening a window of small width by lithography patterning of a protective layer on top of the SWNT, followed by applying an oxygen plasma to the exposed SWNT portion. In another embodiment, the gap of a cut SWNT is reconnected by one or more difunctional molecules having appropriate lengths reacting to the functional groups on the cut SWNT ends to form covalent bonds. In another embodiment, the gap of a cut SWNT gap is filled with a self-assembled monolayer from derivatives of novel contorted hexabenzocoranenes. In yet another embodiment, a device based on molecular wire reconnecting a cut SWNT is used as a sensor to detect a biological binding event.
Owner:THE TRUSTEES OF COLUMBIA UNIV IN THE CITY OF NEW YORK

Nanoscale Content-Addressable Memory

A combined content addressable memory device and memory interface is provided. The combined device and interface includes one or more one molecular wire crossbar memories having spaced-apart key nanowires, spaced-apart value nanowires adjacent to the key nanowires, and configurable switches between the key nanowires and the value nanowires. The combination further includes a key microwire-nanowire grid (key MNG) electrically connected to the spaced-apart key nanowires, and a value microwire-nanowire grid (value MNG) electrically connected to the spaced-apart value nanowires. A key or value MNGs selects multiple nanowires for a given key or value.
Owner:UNIV OF FLORIDA RES FOUNDATION INC

Materials and methods of derivitzation of electrodes for improved electrical performance of OLED display devices

A method of derivitization of electrode surfaces in small molecule or polymeric organic light emitting diodes (OLED) and display devices employing the same are presented whereby and assemblage of molecular wires are employed. The assemblage of molecular wires facilitates the transportation of electrical energy from an inorganic electrode, such as indium-tin-oxide or doped silica, to organic layers of compounds and composites / polymers, found in conventional OLED materials and construction. Thereby, devices made in accordance with the invention have dramatically improved work function characteristics including a dramatic increase in the external quantum efficiency. In addition, the molecular wire components further stabilize the mechanical properties of OLED materials at the wire OLED interface.
Owner:DYNAMIC ORGANIC LIGHT

Dithiophene ethene functional material, and its preparing method and use

The invention belongs to the technical field of diarylethylene photic color-changing material, relating to a diarylethylene photic color-changing monomer or polymer whose main chain contains a single or plural alkyl fluorenes, which remarkably raise closed loop quantum efficiency of the material; and the long chain alkyl makes the polymer possess very good solubility, beneficial to polymer rotary coating to form film. The fluorescence of the polymer changes obviously before and after photic changing color, and thus the polymer has very good fluorescent ON and OFF performances. The synthesizing route is convenient and compact, and the polymerization degree is high. The material can be applied to the fields of high density information storage, molecular switches, molecular lead wires, etc.
Owner:FUDAN UNIV

Fluorescent probes for monitoring voltage by photo-induced electron transfer

Compounds and methods for determining transmembrane potential, monitoring changes in transmembrane potential, and / or drug screening are provided. In one aspect, compounds of the invention have a structure according to the formula: E-M-A, wherein A is a fluorophore, selected from xanthenes, eoumarins, cyanines, bimanes, and difluoroboradizaindacenes, charged at physiological pH; M is a molecular wire; and E is a hydrophobic moiety, wherein A and E are capable of being involved in a photo-induced, intramolecular electron transfer that quenches the fluorescence of A in response to a voltage condition. When in use, compounds of the invention are membrane-impermeant and oriented within the cell membrane such that the charged moiety localizes at the outer leaflet of the lipid bilayer and the hydrophobic moiety and molecular wire associate with the hydrophobic portion of the lipid bilayer. The rate of electron transfer, fluorescence intensity, and quenching are altered in response to changes in transmembrane potential.
Owner:RGT UNIV OF CALIFORNIA

Thin Film Devices Utilizing Hexabenzocoronenes

The present invention generally relates to the fabrication of molecular electronics devices from molecular wires and Single Wall Nanotubes (SWNT). In one embodiment, the cutting of a SWNT is achieved by opening a window of small width by lithography patterning of a protective layer on top of the SWNT, followed by applying an oxygen plasma to the exposed SWNT portion. In another embodiment, the gap of a cut SWNT is reconnected by one or more difunctional molecules having appropriate lengths reacting to the functional groups on the cut SWNT ends to form covalent bonds. In another embodiment, the gap of a cut SWNT gap is filled with a self-assembled monolayer from derivatives of novel contorted hexabenzocoranenes. In yet another embodiment, a device based on molecular wire reconnected a cut SWNT is used as a sensor to detect a biological binding event.
Owner:NUCKOLLS COLIN +4

Compound for molecular electronic device

InactiveUS20080087887A1Decrease an electronic shortProduce a molecular electronic device economically and efficientlyOrganic chemistryNanoinformaticsMolecular switchMolecular wire
Disclosed are a compound which works as electronic materials such as a molecular memory, a molecular switch, a molecular rectifier, a molecular wire, and so on, and a molecular electronic device including the same. The compound for molecular electronic device has the structure of following Formula 1, (MnRM)nā€ƒā€ƒ<Formula 1>wherein, R is a single molecule having an electrical conductivity, M is independently a repeating unit constituting a polymer having an electrical conductivity, and n is independently an integer ranging from 100 to 500.
Owner:DONGJIN SEMICHEM CO LTD

Method of molecular-scale pattern imprinting at surfaces

A method for mask-free molecular or atomic patterning of surfaces of reactive solids is disclosed. Molecules adsorb at surfaces in patterns, governed by the structure of the surface, the chemical nature of the adsorbate, and the adsorbate coverage at the surface. The surface is patterned and then imprinted with the pattern by inducing localized chemical reaction between adsorbate molecules and the surface of the solid, resulting in an imprint being formed in the vicinity of the adsorbate molecules. When the imprinted molecular patterns are conjugated chains containing Ļ€ bonds along which electrical charge can flow the molecular patterns constitute molecular wires or the imprinted molecules constitute a molecular-scale device. The surface of the substrate can be doped by including n- or p-type dopants in the adsorbate molecules. These molecular wires are anchored to the substrate by using conjugated chains which can be chemically bound at intervals along the chains to the substrates.
Owner:POLANYI JOHN C

Molecular wire transistor (MWT)

Bipolar and field effect molecular wire transistors are provided. The molecular wire transistor comprises a pair of crossed wires, with at least one of the wires comprising a doped semiconductor material. The pair of crossed wires forms a junction where one wire crosses another, one wire being provided with Lewis acid functional groups and the other wire being provided with Lewis base functional groups. If both wires are doped semiconductor, such as silicon, one is P-doped and the other is N-doped. One wire of a given doping comprises the emitter and collector portions and the other wire comprises the base portion, which is formed by modulation doping on the wire containing the emitter and collector at the junction where the wires cross and between the emitter and collector portions, thereby forming a bipolar transistor. Both NPN and PNP bipolar transistors may be formed. Analogously, one wire may comprise doped semiconductor, such as silicon, and the other wire a metal, the doped silicon wire forming the source and drain and the metal wire forming the gate by modulation doping on the doped silicon wire where the wires cross, between the source and drain, to form a field effect transistor. Both P-channel and N-channel FETs may be formed. The construction of both bipolar transistors and FETs on a nanometer scale, which are self-aligned and modulation-doped, is thereby enabled.
Owner:HEWLETT-PACKARD ENTERPRISE DEV LP

Electrically conductive thermoplastic elastomer composite

An electrically conductive thermoplastic elastomer composite comprising an elastomer matrix and particles coated with metal as an electrically conductive filler. The electrically conductive particles are at least partly coated with a self-assembled monomolecular layer. Alternatively, the coating may comprise molecular wires that settle between the self-assembled molecules. The resistivity of the thermoplastic elastomer of the invention is low and does not substantially increase by the action of compression.
Owner:PREMIX OY

Synthesis of middle position-tetraaryldiphenanthrene diselenoporphyrin derivative and application thereof

The invention discloses a 5,10,15,20-tetra-aryl diphenanthrene (9,10-b:9,10-1)-22,24-diseleno porphyrin compound which is obtained by the reaction of phenanthro-pyrrole and 2,5-di(aryl hydroxyl methyl) selenophen under low temperature and catalysis of BF3 Et2O in anaerobic atmosphere. The Soret spectral bands of the compound appear in 521nm, compared with tetraphenyl diseleno porphyrin without conjugated aromatic ring at beta-site, the Soret spectral bands are red shifted by 52nm and enter a green light zone above 500nm. The compound has wide application prospects in such areas as photodynamics therapy photosensitizer, OFETs (organic field effect tubes), molecular antenna, light energy converter, optical conversion material, molecular switch, molecular logic gate, molecular wire, organic solar battery, organic electroluminescence, non-linear optical material, optical storage, molecular identification and medicine and so on.
Owner:NANJING UNIV

Hogwash oil identifying method based on volatile matter

The invention discloses a hogwash oil identifying method based on volatile matter. The method comprises the following steps of (1) designing a molecular wire array probe; (2) constructing a molecular wire piezoelectric sensor device; (3) analyzing a known sample; (4) extracting feature identifying information; and (5) identifying a sample to be tested: achieving fast identification of hogwash oil by comparing an output feature value with a feature value of the known sample. The hogwash oil identifying method based on the volatile matter has the advantages of being high in sensitivity, fast in detection, convenient to operate, low in cost and the like, and can provide a reliable basis for the law-enforcing department and inspection bodies to perform sampling inspection on quality of oil products.
Owner:CENTRAL SOUTH UNIVERSITY OF FORESTRY AND TECHNOLOGY

Molecular wire crossbar logic (MWCL)

A programmable logic array (PLA) comprising a two-dimensional array of a plurality of nanometer-scale switches is provided. Each switch comprises a pair of crossed wires which form a junction where one wire crosses another and at least one connector species connecting the pair of crossed wires in the junction. The connector species comprises a bi-stable molecule. A plurality of switches is configurable as an AND gate and a plurality of switches is configurable as an OR gate.
Owner:HEWLETT-PACKARD ENTERPRISE DEV LP +2

Synthesis of middle position-tetraphenyldiphenanthrene disulphoporphyrin derivative and application thereof

The invention discloses a making method of 5, 10, 15, 20-tetrabenadiphenanthroime [9, 10-b: 9, 10-l]-22, 24-dithioporphyrin compound, which is characterized by the following: reacting phenanthroime pyrrole and 2, 5-di (phenyl hydroxy methyl) thiofuran or 2, 5-di(4-chlorphenyl hydroxy methyl) thiofuran catalyzed by BF3.Et2O under low temperature; displaying 505nm in the Soret band; making the beta-non-aromatic conjugated tetraphenyl-dithioporphyrin move 70nm than red spectrum of Soret and 51nm than middle position-tetraphenyl-2, 3, 12, 13-tetraphenyl-21, 23-dithioporphyrin of lamda max S2TPP; entering into green area over 500nm; fitting for photosensitizer, OFETs, molecular antenna, light-energy switcher, photoelectric switching material, molecular switch, molecular logic door, molecular wire, organic solar energy battery, organic electroluminescent material and non-linear optical material.
Owner:NANJING UNIV

Synthesis of middle position-tetraaryldiphenanthrene dioxyporphyrin derivative and application thereof

The invention discloses a method for preparing 5,10,15,20-tetra-aryl diphenanthrene (9,10-b;9,10-1)-22,24-diseleno porphyrin compound by the reaction of phenanthro-pyrrole and 2,5-di(aryl hydroxyl methyl) selenophen at low temperature with the function of BF3 Et2O under water free and oxygen free condition. The Soret spectral bands of the compound appear in 521nm, compared with tetraphenyl diseleno porphyrin without conjugated aromatic ring at beta-site, the Soret spectral bands are red shifted by 52nm and enter green light zone above 500nm. The compound has wide application prospects in such areas as photodynamics therapy photosensitizer, OFETs (organic field effect tube), molecular antenna, light energy converter, optical conversion material, molecular switch, molecular logic gate, molecular wire, organic solar battery, organic electroluminescence, non-linear optical material, optical storage, molecular identification and medicine and so on.
Owner:NANJING UNIV

Chitosan / ion liquid conductive compound film and preparation thereof

The invention provides a chitosan / ionic liquid conductive composite film. The film is prepared by the following steps: dissolving chitosan and ionic liquid in distilled water at a mol ratio of 1:0.26-1:5 by weight; heating to 40-70 DEG C to vaporize part of water to allow the solution in gel state; then injecting the solution into a polytetrafluoroethylene mould and stirring at room temperature; transferring the mould into a vacuum drying oven after water is completely volatilized; and drying at the temperature of 30-50 DEG C for 12-24h to obtain the film. The prepared chitosan / ionic liquid conductive composite film has room-temperature conductivity up to 0.44*10-0.68*10Scm in water-free condition and can be doped with I2 due to introduction of the ionic liquid containing I anions, thus the conductivity of the film can be increased by an order of magnitude and reach 0.97*10Scm at most. The chitosa / ionic liquid conductive composite film has wide application prospects in energy sources, photoelectronic devices, information, sensors, molecular conducting wire and molecular devices, as well as electromagnetic shielding, anticorrosion of metal and stealth technologies.
Owner:NORTHWEST NORMAL UNIVERSITY
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products