Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

258 results about "Molecular switch" patented technology

A molecular switch is a molecule that can be reversibly shifted between two or more stable states. The molecules may be shifted between the states in response to environmental stimuli, such as changes in pH, light, temperature, an electric current, microenvironment, or in the presence of ions and other ligands. In some cases, a combination of stimuli is required. The oldest forms of synthetic molecular switches are pH indicators, which display distinct colors as a function of pH. Currently synthetic molecular switches are of interest in the field of nanotechnology for application in molecular computers or responsive drug delivery systems. Molecular switches are also important in biology because many biological functions are based on it, for instance allosteric regulation and vision. They are also one of the simplest examples of molecular machines.

New E-field-modulated bistable molecular mechanical device

A molecular system is provided for nanometer-scale reversible electronic and optical switches, specifically, electric field-activated molecular switches that have an electric field induced band gap change that occurs via a molecular conformation change or a tautomerization. Changing of extended conjugation via chemical bonding change to change the band gap is accomplished by providing the molecular system with one rotating portion (rotor) and two or more stationary portions (stators), between which the rotor is attached. The molecular system of the present invention has three branches (first, second, and third branches) with one end of each branch connected to a junction unit to form a "Y" configuration. The first and second branches are on one side of the junction unit and the third branch is on the opposite side of the junction unit. The first branch contains a first stator unit in its backbone, the junction unit comprises a second stator unit, and the first branch further contains a rotor unit in its backbone between the first stator unit and the second stator unit. The second branch includes an insulating supporting group in its backbone for providing a length of the second branch substantially equal to that of the first branch, wherein the rotor unit rotates between two states as a function of an externally-applied field.
Owner:SAMSUNG ELECTRONICS CO LTD

Methods and compositions to enhance vaccine efficacy by reprogramming regulatory t cells

The immunoregulatory enzyme indoleamine 2,3-dioxygenase (IDO) is expressed by a subset of murine plasmacytoid DCs (pDCs) in tumor-draining LNs, where it can potently activate Foxp3 regulatory T cells (Tregs). We now show that IDO functions as a molecular switch in tumor-draining LNs, maintaining Tregs in their normal suppressive phenotype when IDO was active, but allowing inflammation-induced conversion of Tregs to a polyfunctional T-helper phenotype similar to proinflammatory TH17 cells when IDO was blocked. In vitro, conversion of Tregs to the TH17-like phenotype was driven by antigen-activated effector T cells, and required IL-6 produced by activated pDCs. IDO regulated this conversion by dominantly suppressing production of IL-6 in pDCs, in a GCN2-kinase dependent fashion. In vivo, using a model of established B16 melanoma, the combination of an IDO-inhibitor drug plus anti-tumor vaccine caused upregulation of IL-6 in pDCs and in situ conversion of a majority of Tregs to the TH17 phenotype, with marked enhancement of CD8+ T cell activation and anti-tumor efficacy. Thus, Tregs in tumor-draining LNs can be actively re-programmed in vitro and in vivo into T-helper cells, without the need for physical depletion, and IDO serves as a key regulator of this critical conversion.
Owner:GEORGIA HEALTH SCI UNIV RES INST

Two-dimensional Fe(II) complex pressure-caused spin conversion materials, preparation method and application thereof

InactiveCN101712695ANo spin conversionIron organic compoundsMagnetic susceptibilitySpins
The invention provides two-dimensional Fe(II) complex pressure-caused spin conversion materials, a preparation method and application thereof. The invention relates to the field of spin conversion materials science, in particular to pressure-caused spin conversion materials, a preparation method and application thereof. The chemical formula of the two-dimensional Fe(II) complex pressure-caused spin conversion materials is [Fe(L)2(SCN)2]n, wherein L is 1,3-Bis (1H-1,2,4-triazol-1-ylmethyl)-2,4,6-trimethylbenzene ligand. The preparation method chooses L as the ligand to synthesize the two-dimensional Fe(II) complex pressure-caused spin conversion materials. The materials are free from the phenomenon of spin conversion under normal pressure; the results of temperature-change magnetic susceptibility show that antiferromagnetic interaction exists between Fe and Fe; and after pressure is increased, the results of temperature-change magnetic susceptibility show that the phenomenon of spin conversion appears, and the temperature of spin conversion changes from low to high with the increase in pressure, so the temperature of spin conversion can be regulated by regulating external pressure. Therefore, the materials have good application prospects in the fields of nanometer devices, molecular memory, molecular switches and molecule display, as well as industry.
Owner:NANKAI UNIV

E-field-modulated bistable molecular mechanical device

A molecular system is provided for nanometer-scale reversible electronic and optical switches, specifically, electric field-activated molecular switches that have an electric field induced band gap change that occurs via a molecular conformation change or a tautomerization. Changing of extended conjugation via chemical bonding change to change the band gap is accomplished by providing the molecular system with one rotating portion (rotor) and two or more stationary portions (stators), between which the rotor is attached. The molecular system of the present invention has three branches (first, second, and third branches) with one end of each branch connected to a junction unit to form a "Y" configuration. The first and second branches are on one side of the junction unit and the third branch is on the opposite side of the junction unit. The first branch contains a first stator unit in its backbone, the junction unit comprises a second stator unit, and the first branch further contains a rotor unit in its backbone between the first stator unit and the second stator unit. The second branch includes an insulating supporting group in its backbone for providing a length of the second branch substantially equal to that of the first branch, wherein the rotor unit rotates between two states as a function of an externally-applied field.
Owner:SAMSUNG ELECTRONICS CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products