Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

557results about How to "Improve sulfur resistance" patented technology

Low-temperature sulfur-resistant denitration catalyst and preparation method thereof

The invention discloses a preparation method of a catalyst for removing NOx in coke oven tail gas through low-temperature sulfur-resistant catalytic reduction.The catalyst is prepared by taking titanium oxide as a carrier, taking one or two of cerium oxide, zirconia oxide and lanthanum oxide as an auxiliary, taking one or more than two of manganese oxide, cobalt oxide, copper oxide and ferric oxide as an active ingredient and adopting a precipitation-deposition method, wherein two or three of TiO2, ZrO2, CeO2, La2O2, MgO, CaO and BaO can be adopted as the carrier.In the low-temperature sulfur-resistant denitration catalyst, the loading quantity of the active ingredient is 5 wt%-20 wt%, and the loading quantity of the auxiliary is 0.5%-5%.According to the preparation method, the active ingredient prepared by achieving precipitation and deposition sodium carbonate and oxidizing and loading the active ingredient manganese dioxide through potassium permanganate is mainly distributed in the surface area of the carrier, and the dosage of the active ingredient can be effectively decreased.The catalyst is high in activity and sulfur poisoning resisting capacity and particularly suitable for catalytic removal of the NOx in the coke oven tail gas, and the denitration effect of the catalyst also can be expanded to the low-temperature denitration process of other tail gases.
Owner:GANSU TIANLANG CHEM TECH CO LTD +1

Low-temperature sulfur-resistant denitration catalyst and preparing method thereof

The invention discloses a low-temperature sulfur-resistant denitration catalyst and a preparing method of the low-temperature sulfur-resistant denitration catalyst. The low-temperature sulfur-resistant denitration catalyst is formed by mixing, by weight, 15%-100% of active sites and 0-85% of carbon-based carriers; the active sites are formed by mixing one or two of the first active sites and the second active sites; the first active sites are composed of Mn(0.1-0.8)Ce(0.2-0.9)Ox or Mn(0.1-0.8)Mg(0.2-0.9)Ox dispersed into a 3A molecular sieve, and the value of the x is determined according to the content and the oxidation valence state of metallic elements in the chemical formula; the second active sites are composed of Mn (0.1-0.8)Mg(0.2-0.9) or Mn (0.1-0.8)Ce (0.2-0.9)Ox with the surface coated with a TiO2 or SiO2 protecting layer. According to the method, one or more of the first active sites and the second active site are mixed with carbon-based carriers to obtain the low-temperature sulfur-resistant denitration catalyst. As surface dewatering is performed on the catalyst, water molecules contained in flue gas are attached in an open-framework structure of the catalyst to form capillary condensation very difficultly or form vitriol or sulphurous acid ammonium salt with NH3 and SO2 or SO3 to cause deactivation of the catalyst.
Owner:XIAN SINO GREEN HI TECH CO LTD

High-energy-ball-milling-method SCR molecular sieve catalyst and preparation method thereof

The invention relates to a composite oxide iron-based molecular sieve SCR catalyst and a preparation method thereof. The composite oxide iron-based molecular sieve SCR catalyst is characterized in that the preparation method comprises the following steps: uniformly mixing copper oxide, iron oxide and co-catalyst metal oxide materials with molecular sieves by using a high energy ball milling method; adding an active component guiding-in agent and a surface dispersant to carry out impregnation; and ball-milling, drying, grinding and calcining to obtain the composite oxide iron-based molecular sieve SCR catalyst. The composite oxide iron-based molecular sieve SCR catalyst is used for catalytically purifying NOx in motor vehicle exhaust. The preparation process of the catalyst is simplified, the high energy ball milling method is adopted, the active component guiding-in agent and the surface dispersant are added so that metal active components are uniformly distributed in molecular sieve holes and on surfaces of the molecular sieve holes, during calcining, the metal oxide has abundant valence states, and the NOx conversion efficiency is high; and by the added co-catalyst metallic compound, sulfur resistance is improved, meanwhile, the co-catalyst metallic compound can also serve as an active component, NO-to-NO2 conversion is strengthened, the activity of the SCR catalyst is improved remarkably, and the actual application value is high.
Owner:CHINA FIRST AUTOMOBILE

Molybdenum sulfide catalyst and preparation thereof, and applications of molybdenum sulfide catalyst in hydrogenation degradation of aromatic phenol and ether compounds

The invention discloses a molybdenum sulfide catalyst and a preparation method thereof, and applications of the molybdenum sulfide catalyst in high-added value aromatic fine chemical product production reactions through hydrogenation degradation of aromatic phenol and ether compounds. According to the molybdenum sulfide catalyst I, molybdenum sulfide is adopted as a main active component, one or a plurality of materials selected from nickel, cobalt, iron, copper, platinum, ruthenium, rhodium, palladium, lanthanum, osmium, iridium and the like can be added as a second metal component, the components can be supported on one carrier selected from active carbon (AC), carbon black (VB), carbon fiber (CF), graphene, carbon nano-tubes (CT), a mesoporous carbon material, gamma-alumina (gamma-Al2O3), silica (SiO2), zirconia (ZrO2), titania (TiO 2), a silicon-aluminum molecular sieve and a phosphorous-aluminum molecular sieve, and the catalyst is used for the catalytic hydrogenation degradation reaction of aromatic phenol and ether compounds. According to the present invention, with the catalyst, the aromatic phenol and ether compounds can be catalytically converted into the high-added value aromatic chemical products having the aromatic structure at the temperature of 150-350 DEG C under the initial hydrogen gas pressure of 1-6 MPa in the high-efficiency, high-selectivity and high-yield manner.
Owner:TIANJIN UNIV +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products