Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

513 results about "Mordenite" patented technology

Mordenite is a zeolite mineral with the chemical formula, (Ca, Na₂, K₂)Al₂Si₁₀O₂₄·7H₂O. and it is one of the six most abundant zeolites and is used commercially. It was first described in 1864 by Henry How. He named it after the small community of Morden, Nova Scotia, Canada, along the Bay of Fundy, where it was first found.

Self-regenerative process for contaminant removal from liquid and supercritical CO2 fluid streams

A method for the decontamination of fluid (liquid or supercritical) carbon dioxide fluid, especially of hydrocarbon contaminants, down to <=100 ppb concentration are described. The critical component is a high silica zeolite, preferably a high silica Y-type zeolite, ZSM-5 or a high silica mordenite, which in a variety of physical forms is capable of decontaminating such fluid CO2 to <=100 ppb, <=10-50 ppb, or ~1 ppb, without being detrimentally affected by the supercritical operating environment. The high silica zeolite may be produced by the removal of alumina from a natural or synthetic zeolite while retaining the desirable zeolite structure, to a silica:alumina ratio of from 20-2000:1. Preferably the zeolite is disposed in separate quantities in at least two vessels, which operate alternately. A portion of the purified product from the operating vessel is directed to the other vessel and there used to remove accumulated contaminants from that vessel's zeolite. The process thus provides self-regeneration, in that regeneration of one vessel occurs while the other vessel decontaminates contaminated fluid carbon dioxide, so that use of the two can be alternated for substantially continual production of purified fluid carbon dioxide. The invention provides purified fluid carbon dioxide used in manufacture of such products as high purity electronic, optical, prosthetic or similar products or polymers or pharmaceuticals or in beverages.
Owner:ENTEGRIS INC

High temperature ammonia SCR catalyst and method of using the catalyst

A catalyst and a method for selectively reducing nitrogen oxides (“NOx”) with ammonia are provided. The catalyst includes a first component comprising a zeolite or mixture of zeolites selected from the group consisting of ZSM-5, ZSM-11, ZSM-12, ZSM-18, ZSM-23, MCM-zeolites, mordenite, faujasite, ferrierite, zeolite beta, and mixtures thereof; a second component comprising at least one member selected from the group consisting of cerium, iron, copper, gallium, manganese, chromium, cobalt, molybdenum, tin, rhenium, tantalum, osmium, barium, boron, calcium, strontium, potassium, vanadium, nickel, tungsten, an actinide, mixtures of actinides, a lanthanide, mixtures of lanthanides, and mixtures thereof; optionally an oxygen storage material and optionally an inorganic oxide. The catalyst selectively reduces nitrogen oxides to nitrogen with ammonia at high temperatures. The catalyst has high hydrothermal stability. The catalyst has high activity for conversion of low levels of nitrogen oxides in exhaust streams. The catalyst and the method may have special application to selective reduction of nitrogen oxides in exhaust gas from gas turbines and gas engines, although the catalyst and the method have broad application to a wide range of gas streams that have excess oxygen and high temperatures. The temperature of exhaust gas from gas turbines and gas engines is high. Both the high temperature and the low levels of inlet NOx are challenging for selective catalytic reduction (SCR) catalysts.
Owner:CATALYTIC SOLUTIONS INC

Mordenite/beta zeolite/Y zeolite coexisting material and method for synthesizing same

The invention relates to a mordenite/beta zeolite/Y zeolite coexisting material and a method for synthesizing the same, and mainly solves the problems that a porous material synthesized by the prior art is single in pore-size, weak in acid and low in activity. The method prepares the mordenite/beta zeolite/Y zeolite coexisting material by adding a seed crystal containing a Y zeolite precursor during a synthesis process of mordenite/beta zeolite/Y zeolite coexisting material. A mole relation of the components of the synthesized mordenite/beta zeolite/Y zeolite coexisting material is nSiO2 :Al2O3, wherein n is between 4 and 400; the XRD diffraction pattern of the mordenite/beta zeolite/Y zeolite coexisting material comprises a technical proposal that a maximum value of a distance d is at positions between 14.52-0.1 and 14.52+0.1 A, 13.52-0.1 and 13.52+0.1 A,11.32-0.1 and 11.32+0.1 A, 8.96-0.1 and 8.96+0.1 A, 6.71-0.1 and 6.71+0.1 A, 5.71-0.1 and 5.71+0.1 A, 4.51-0.05 and 4.51+0.05 A, 4.15-0.05 and 4.15+0.05 A, 3.97-0.05 and 3.97+0.05 A, 3.78-0.05 and 3.78 +0.05 A, 3.51-0.05 and 3.51+0.05 A, 3.02-0.05 and 3.02+0.05 A, and 2.86-0.1 and 2.86+0.1 A; therefore, the problems are solved well. The mordenite/beta zeolite/Y zeolite coexisting material can be used in the industrial production of ethylene and propylene through the catalytic pyrolysis of naphtha.
Owner:CHINA PETROLEUM & CHEM CORP +1

Preparation method for mordenite with high Si/Al ratio and small crystal particle

The invention discloses a preparation method for mordenite with a high Si / Al ratio and a small crystal particle, which comprises the following steps of: firstly, dissolving an Al source in sodium oxide solution; after an Si source is added, stirring and dispersing for certain time at room temperature and under strong magnetic force; mixing the Al source solution and the Si source solution which are evenly dispersed into glue at the room temperature; adding inorganic lamellar precursors, such as lamellar zeolite molecular sieves, lamellar silicate and the like to serve as seed crystal; after mixture is stirred and mixed evenly at the room temperature and under the strong magnetic force, transferring into a reaction crystallization kettle; at the temperature of 150-170DEG C, carrying out crystallization reaction for 0.5-3 days; and obtaining a solid product after common suction filtration, washing and drying. The synthesis method disclosed by the invention has the characteristics that expensive organic amine template is not used as structure-directing agent, and instead, the easily-obtained inorganic lamellar precursors with abundant source and low price are used as the seed crystal to directly synthesize a mordenite molecular sieve with the high Si / Al ratio. The prepared nanometer mordenite molecular sieve has the advantages of high degree of crystallinity and purity, controllable particle size and morphology, low cost and small environment pollution, and is convenient for industrially producing on a large scale.
Owner:EAST CHINA NORMAL UNIV

Preparation method of mesoporous mordenite

ActiveCN102602958ANovel Crystal MorphologyAbundant secondary stacking poresNanotechnologyMordenite aluminosilicate zeoliteFiltrationSynthesis methods
The invention discloses a method for synthesizing a mesoporous mordenite molecular sieve. The method comprises the following steps of: dissolving an aluminum source in a sodium hydroxide solution; adding a silicon source and stirring to disperse for a certain period of time at room temperature under strong magnetic force, wherein the uniformly dispersed solution of silicon source and aluminum source is mixed into glue at room temperature; adding a dealuminated mordenite molecular sieve as seed crystal; stirring and uniformly mixing at room temperature under strong magnetic force, and transferring the product into a reaction crystallization kettle; performing crystallization reaction at 150-170 DEG C for 0.5-3 days; and performing conventional suction filtration, washing and drying to obtain a solid product. The synthesis method disclosed by the invention has the characteristics that the expensive organic amine template agent is not used as a structure directing agent, and the cheap and easily-available inorganic layered precursor with wide source is used as the seed crystal to directly synthesize a mordenite molecular sieve with high silica-alumina ratio; and the prepared nano mordenite molecular sieve has the advantages of high crystallinity and purity, abundant accumulation meso pores, controllable particle size, form and low cost, less environment pollution and convenience for industrial large-scale production.
Owner:EAST CHINA NORMAL UNIV

Nano crystallite composite filter material and supplement of manufacture method thereof

The invention extends the connotation range required to be protected on the basis of a previously issued patent ZL200710025045.4, i.e., a nanometer microcrystalline composite filter material and a preparation method thereof, belonging to the field of a water disposal technique material. According to weight percentage, the nanometer microcrystalline composite filter material comprises 3-95 percent of attapulgite clay, 5-80 percent of sepiolite clay, 2-25 percent of kaolinite clay, 2-97 percent of tubular halloysite, 5-75 percent of diatomite, 5-75 percent of natural zeolite (clinoptilolite, mordenite and the like), 0-25 percent of pillared montmorillonite, 0-50 percent of expanded vermiculite, 0-5 percent of expanded perlite and 0-50 percent of active carbon or bamboo carbon powders. All raw materials which are powder shapes are mixed according to proportion and stirred to granulate by adding an inorganic adhesive, then sintered and activated at the temperature of 900-500 DEG C (inert gas is required for sintering and activating the filter material added with active carbon). The nanometer microcrystalline composite filter material has smooth shape, rough surface and uniform particle size, with the diameter of 1-10mm, and is used for biological filter tanks and high-class adsorption filter materials in deep purification systems of drinking water and reclaimed water sewage disposal systems.
Owner:傅成义

Mordenite/Y zeolite coexisting molecular sieve and method for synthesizing same

The invention relates to a mordenite/Y zeolite coexisting molecular sieve and a method for synthesizing the same, and mainly solves the problems that a porous material synthesized by the prior art is single in pore-size, weak in acid and low in activity. The method prepares the mordenite/Y zeolite coexisting molecular sieve by adding a seed crystal containing a Y zeolite precursor and well controlling the nucleating and growing process of a molecular sieve during a synthesis process of mordenite. The coexistence phase ratio of the mordenite/Y zeolite coexisting molecular sieve is adjustable, and a mole relation of the components of the synthesized coexisting molecular sieve is nSiO2 :Al2O3, wherein n is between 4 and 400; the coexisting molecular sieve has more than two phases, the XRD diffraction pattern of the coexisting molecular sieve comprises a technical proposal that a maximum value of a distance d is at positions between 14.52-0.05 and 14.52+0.05 A, 13.52-0.05 and 13.52+0.05 A, 8.96-0.05 and 8.96+0.05 A, 8.83-0.05 and 8.83+0.05 A, 6.71-0.1 and 6.71+0.1 A, 5.71-0.1 and 5.71 +0.1 A, 4.51-0.1 and 4.51+0.1 A, 3.98-0.1 and 3.98+0.1 A, 3.78-0.05 and 3.78+0.05 A, 3.47-0.1 and 3.47+0.1 A, and 2.86-0.1 and 2.86+0.1 A; therefore, the problems are solved well. The coexisting molecular sieve can be used in the industrial production of ethylene and propylene through the catalytic pyrolysis of naphtha.
Owner:CHINA PETROLEUM & CHEM CORP +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products