Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

5971 results about "Coupling reaction" patented technology

A coupling reaction in organic chemistry is a general term for a variety of reactions where two fragments are joined together with the aid of a metal catalyst. In one important reaction type, a main group organometallic compound of the type R-M (R = organic fragment, M = main group center) reacts with an organic halide of the type R'-X with formation of a new carbon-carbon bond in the product R-R'. The most common type of coupling reaction are cross coupling reaction.

Method for preparing diethyl oxalate by coupling CO

The invention discloses a method for preparing diethyl oxalate by CO coupling reaction. By applying a gas phase method, CO is coordinated with ethyl nitrite and is catalyzed by bimetallic supported catalyzer to couplingly generate crude diethyl oxalate, the reaction is a self-sealing circulation process, the CO gas mixed with the ethyl nitrite coming from a regeneration reactor is preheated and then enters into a coupling reactor, after the reaction, the gas is separated by condensation, so that the colorless and transparent condensed diethyl oxalate liquid is produced, and the uncondensed gas containing NO enters into the regeneration reactor to react with ethanol and oxygen in order to generate ethyl nitrite which is again circulated back to the coupling reactor for continuous use. The invention is carried out on the basis of previous laboratory research and under the background of industrial production and fulfils the continuous run examination of the bench scale test and pilot magnification under the condition of industrial operation, the temperature of the coupling reaction is low, and the concentration of products is increased. The method has the advantages of more energy saving, no pollution and high benefit. The total conversion rate of the CO generated by reaction is one hundred percent, and the selectivity of diethyl oxalate is over ninety six percent.
Owner:TIANJIN UNIV

Polymer formulations containing perfluorinated compounds for the engineering of cells and tissues for transplantation that improves cell metabolism and survival, and methods for making same

InactiveUS6630154B1High viscosityMedium viscosity alginatesPowder deliveryBiocideCross-linkInorganic salts
Disclosed and claimed are: a composition including at least one glycosaminoglycan, e.g., CIS, at least one perfluorinated substance and at least one alginate, e.g., sodium alginate, wherein:the at least one glycosaminoglycan and / or the perfluorinated substance and / or the alginate are cross-linked or polymerized, e.g., the alginate is cross-linked or polymerized, for instance by addition of an inorganic salt, such as a calcium salt; orthe at least one glycosaminoglycan, the perfluorinated substance and the alginate are covalently bound, e.g., by means of a coupling reaction involving a linker molecule such as DVS; orthe at least one glycosaminoglycan and / or the perfluorinated substance and / or the alginate are cross-linked or polymerized, e.g., the alginate is cross-linked or polymerized, for instance by addition of an inorganic salt, such as a calcium salt, and the at least one glycosaminoglycan and the alginate are covalently bound, e.g., by means of a coupling reaction involving a linker molecule such as DVS, and the covalent binding can have been performed prior to cross-linking or polymerizing or vice versa; and,gels comprising the composition; mixtures of such gels or of at least one such gel and at least one such composition; and,methods for making and using such compositions and gels, including products therefrom such as "paints", sprays, matrices, beads, microcapsules.
Owner:BIOMM +1

Novel liquid polycarbosilane as well as preparation method and application thereof

The invention discloses novel liquid polycarbosilane which is low in viscosity and high in storage stability and is crosslinkable, a preparation method of novel liquid polycarbosilane, and an application of novel liquid polycarbosilane. Polycarbosilane is prepared by adopting chloromethyl alkoxy silane or mixtures of chloromethyl alkoxy silane as raw materials by virtue of Grignard coupling reaction and reduction reaction, and the structure of polycarbosilane is shown in a formula (I) in the specification. The structure simultaneously contains Si-H bonds and unsaturated bonds such as C=C bonds, can be subjected to self-crosslinking and curing under a certain condition, has relatively high ceramic yield, and can be used as a silicon carbide precursor of a polymer precursor impregnation pyrolysis (PIP) process. Polycarbosilane disclosed by the invention is adjustable in structural composition, good in storage stability, low in viscosity and relatively low in boiling point, and has the utilization potentiality of being used as a silicon carbide ceramic precursor for chemical vapor deposition/chemical vapor infiltration (CVD/CVI). In addition, polycarbosilane can also be used for replacing commonly-used divinyl benzene to serve as a crosslinking agent of solid-state polycarbosilane (PCS).
Owner:淄博市临淄齐泉工贸有限公司

Synthesis of macrocyclic tetraamido-N ligands

New synthetic methods for the preparation of macrocyclic amido-N donor ligands are provided. The primary method of the present invention involves in general only two synthetic steps. In the first step, an alpha or beta amino carboxylic acid is allowed to react with an optimal (approximately stoichiometric) amount of an activated malonate or oxalate derivative with mild heating. Upon completion of the double coupling reaction, hydrolysis of the reaction mixture yields a diamide containing intermediate (a macro linker). In the second step, stoichiometric amounts of a diamine, preferably an orthophenylene diamine, are added to the macro linker intermediate in the presence of a coupling agent and heat. This second double coupling reaction, is allowed to proceed for a period of time sufficient to produce a macrocyclic tetraamido compound. The substituent groups on the alpha or beta amino carboxylic acid, the malonate, and the aryl diamine may all be selectively varied so that the resulting tetraamido macrocycle can be tailored to specific desired end uses. The macrocyclic tetraamide ligand may then be complexed with a metal, such as a transition metal, and preferably the middle and later transition metals, to form a robust chelate complex suitable for catalyzing oxidation reactions.
Owner:CARNEGIE MELLON UNIV

Graphene oxide supported Schiff base palladium catalyst as well as preparation method and application thereof

The invention relates to a graphene oxide supported Schiff base palladium catalyst as well as a preparation method and application thereof. A catalyst carrier is a graphene oxide prepared by an improved Hummers process, ligand is Schiff base and an active ingredient is palladium salt; the capacity of the palladium in the active ingredient palladium salt is 5.0%-10.0% of the total mass of the catalyst, the diameter of the graphene oxide is 1 mu m-5 mu m, the thickness of the graphene oxide is 0.8 nm-1.2 nm, and the particle diameter of a palladium nano particle is 3 nm-8 nm. The graphene oxide-supported Schiff base palladium catalyst can be used for preventing the palladium from losing in a catalysis process, meanwhile, the graphene oxide has a unique two-dimensional planar structure and can also be used for improving dispersing performance of the palladium nano particle on the surface of the graphene oxide to prevent the palladium from gathering in the catalysis process, so that the catalytic activity of the supported type catalyst is improved. Therefore, the graphene oxide-supported Schiff base palladium catalyst disclosed by the invention can be used for preventing the palladium from gathering and losing better in a catalytic C-C (Carbon-Carbon) coupling reaction process, and has higher catalytic activity and better recycling performance.
Owner:EAST CHINA UNIV OF TECH

Preparation method of modified polymer film material for effectively removing trace heavy metal ions in water body

The invention discloses a preparation method of a modified polymer film material for effectively removing trace heavy metal ions in a water body, which comprises the following steps: 1) carrying out plasma treatment on a polymer film; 2) respectively preparing an initiator solution, a monomer solution, a buffer solution, an activating solution and a polyethylene polyamine water solution; 3) immerging the polymer film in the initiator solution, and carrying out surface activation by ultraviolet irradiation; 4) putting the polymer film into the monomer solution to carry out grafting reaction under ultraviolet irradiation; 5) activating the polymer film in the activating solution; and 6) putting the activated film into a polyethylene polyamine water solution to carry out coupling reaction, thereby preparing the modified film material capable of removing trace heavy metal ions in a water body. In the polymer film modifying process, carboxyl and amino groups are introduced to carry out hydrophilization and endow the modified film with complexing capacity, thereby removing the trace heavy metal ions. The invention has the advantages of simple technique, favorable treatment effect, wide application range, low cost, high unit mass adsorption capacity, time saving, high efficiency and energy saving.
Owner:NINGBO SHUIYI FILM TECH DEV CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products