Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

670 results about "Trifluoromethanesulfonate" patented technology

Triflate, also known by the systematic name trifluoromethanesulfonate, is a functional group with the formula CF₃SO₃−. The triflate group is often represented by −OTf, as opposed to −Tf (triflyl). For example, n-butyl triflate can be written as CH₃CH₂CH₂CH₂OTf.

Sodium ion battery negative electrode sheet and sodium ion battery

The present invention discloses a sodium ion battery negative electrode sheet, the negative electrode sheet is a porous graphite film structure, the diameter of the pores is from 2 to 30 microns, the distance between the centers of the circles of the pores is 5 to 50 microns, mass ratio of carbon atoms in the porous graphite film is greater than 99%, the negative electrode sheet may be used directly as the sodium ion battery negative electrode sheet, can avoid the use of a conductive agent, a binder and a metal collector, and has high capacity, corrosion resistance and good conductivity. The present invention also discloses a sodium ion battery using the negative electrode sheet, the sodium ion battery comprises a positive electrode sheet, a negative electrode sheet, a separator and an electrolyte, the sodium ion battery electrolyte solvent is one or more than one of diethanol dimethyl ether, dimethyl ether tetraethanol, and tetrahydrofuran, the electrolyte is one of sodium perchlorate, sodium hexafluorophosphate, sodium tetrafluoroborate and sodium trifluoromethanesulfonate, and the sodium ion battery is simple in production process and good in charging and discharging cycle stability, and has good prospects in the new energy field.
Owner:QINGDAO INST OF BIOENERGY & BIOPROCESS TECH CHINESE ACADEMY OF SCI

Nonaqueous electrolytic solution containing magnesium ions, and electrochemical device using the same

A nonaqueous electrolytic solution containing magnesium ions which shows excellent electrochemical characteristics and which can be manufactured in a general manufacturing environment such as a dry room, and an electrochemical device using the same are provided. A Mg battery has a positive-electrode can 1, a positive-electrode pellet 2 made of a positive-electrode active material or the like, a positive electrode 11 composed of a metallic net supporting body 3, a negative-electrode cup 4, a negative electrode 12 made of a negative-electrode active material 5, and a separator 6 impregnated with an electrolytic solution 7 and disposed between the positive-electrode pellet and the negative-electrode active material. Metal Mg, an alkyl trifluoromethanesulfonate, a quaternary ammonium salt or/and a 1,3-alkylmethylimidazolium salt, more preferably, an aluminum halide are added to an ether system organic solvent and are then heated, and thereafter, more preferably, a trifluoroborane-ether complex salt is added thereto, thereby preparing the electrolytic solution. By adopting a structure that copper contacts the positive-electrode active material, the electrochemical device can be given a large discharge capacity.
Owner:MURATA MFG CO LTD

Aqueous zinc ion battery electrolyte and application thereof

The invention discloses an aqueous zinc ion battery electrolyte and application thereof. The aqueous zinc ion battery electrolyte disclosed by the invention contains solvent water, high-concentrationelectrolyte salt and zinc salt;the zinc salt is a water-soluble salt; the high-concentration electrolyte salt is potassium bis(fluorosulfonyl) imide and/or potassium trifluoromethanesulfonate, and themass molar concentration is not less than 10mol/kg. According to the electrolyte, due to the fact that high-concentration potassium bis(fluorosulfonyl) imide and/or potassium trifluoromethanesulfonate are/is added, a large number of water molecules in the electrolyte can be consumed due to the strong solvation effect, the hydration effect of zinc ions is reduced, and zinc dendrites formed by thezinc ions in dissolution and deposition are inhibited; in addition, the strong solvation effect of the high-concentration electrolyte salt and solvent water molecules can reduce the electrochemical activity of the water molecules, improve the electrochemical window of the electrolyte, reduce the hydrogen evolution reaction, reduce the dissolution effect of zinc, inhibit the decomposition of the water molecules on the surface of the electrode, reduce the corrosion dissolution of the zinc negative electrode and prolong the cycle life of the aqueous zinc ion battery.
Owner:PEKING UNIV SHENZHEN GRADUATE SCHOOL

Organic compound, semiconductor film electrode employing the organic compound, photoelectric conversion element employing the organic compound, and photoelectrochemical solar cell employing the organic compound

The present invention provides: an organic compound increasing an open circuit voltage, and showing high photoelectric conversion efficiency; a semiconductor film electrode employing the organic compound as a dye; a photoelectric conversion element employing the semiconductor film electrode; and a photoelectrochemical solar cell employing the photoelectric conversion element. The organic compound is represented by the following general formula:
wherein A is a carbazole ring; L1 is an electron transfer linking group having at least one heterocyclic ring selected from the group consisting of a thiophene ring, a furan ring, a pyrrole ring, and a condensed heterocyclic ring formed from any combinations of these rings; R is a substituent group bound to at least one electron transfer linking group selected from the group consisting of an alkyl group, an alkoxy group, and an aryl group; X is at least one electron withdrawing group selected from the group consisting of a cyano group, a carboxylic acid group, an ester group, an amide group, a trifluoromethyl group, a pentafluoroethyl group, a sulfonate group, and a trifluoromethanesulfonate group; M is a hydrogen atom or a salt-forming cation; and n is an integer of 1 to 12.
Owner:NAT INST OF ADVANCED IND SCI & TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products