Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

254results about "Optical prospecting" patented technology

Systems and methods for distributed interferometric acoustic monitoring

This disclosure relates in general to a method and system for monitoring a conduit, a wellbore or a reservoir associated with hydrocarbon production or transportation and / or carbon dioxide sequestration. More specifically, but not by way of limitation, embodiments of the present invention provide for using an optical fiber as a distributed interferometer that may be used to monitor the conduit, wellbore or reservoir. In certain aspects, the distributed interferometric monitoring provides
Owner:SCHLUMBERGER TECH CORP

Systems and methods for distributed interferometric acoustic monitoring

Acoustic monitoring of a conduit, a wellbore or a reservoir associated with hydrocarbon production or transportation and / or carbon dioxide sequestration is carried out using a fibre optic cable extending along or appurtenant to it as a distributed interferometer. Coherent Raleigh noise generated by the transmission of the coherent beam of radiation through the fiber optic is detected and processed to identify an acoustic occurrence.
Owner:SCHLUMBERGER TECH CORP

Method and apparatus for a tunable diode laser spectrometer for analysis of hydrocarbon samples

The present invention provides an down hole apparatus and method for ultrahigh resolution spectroscopy using a tunable diode laser (TDL) for analyzing a formation fluid sample downhole or at the surface to determine formation fluid parameters. In addition to absorption spectroscopy, the present invention can perform Raman spectroscopy on the fluid, by sweeping the wavelength of the TDL and detecting the Raman-scattered light using a narrow-band detector at a fixed wavelength. The spectrometer analyzes a pressurized well bore fluid sample that is collected downhole. The analysis is performed either downhole or at the surface onsite. Near infrared, mid-infrared and visible light analysis is also performed on the sample to provide an onsite surface or downhole analysis of sample properties and contamination level. The onsite and downhole analysis comprises determination of aromatics, olefins, saturates, gas oil ratio, API gravity and various other parameters which can be estimated by correlation, a trained neural network or a chemometric equation.
Owner:BAKER HUGHES INC

Monitoring of Downhole Parameters and Tools Utilizing Fiber Optics

The present disclosure provides systems utilizing fiber optics for monitoring downhole parameters and the operation and conditions of downhole tools and controlling injection operations based on measurements in an injection well and / or a production well.
Owner:BAKER HUGHES INC

Wellbores utilizing fiber optic-based sensors and operating devices

This invention provides a method for controlling production operations using fiber optic devices. An optical fiber carrying fiber-optic sensors is deployed downhole to provide information about downhole conditions. Parameters related to the chemicals being used for surface treatments are measured in real time and on-line, and these measured parameters are used to control the dosage of chemicals into the surface treatment system. The information is also used to control downhole devices that may be a packer, choke, sliding sleeve, perforating device, flow control valve, completion device, an anchor or any other device. Provision is also made for control of secondary recovery operations online using the downhole sensors to monitor the reservoir conditions. The present invention also provides a method of generating motive power in a wellbore utilizing optical energy. This can be done directly or indirectly, e.g., by first producing electrical energy that is then converted to another form of energy.
Owner:BAKER HUGHES INC

Method and apparatus for an advanced optical analyzer

The present invention provides a sample tank having a window for introduction of electromagnetic energy into the sample tank for analyzing a formation fluid sample down hole or at the surface without disturbing the sample. Near infrared, mid infrared and visible light analysis is performed on the sample to provide a downhole in situ or surface on site analysis of sample properties and contamination level. The onsite analysis comprises determination of gas oil ratio, API gravity and various other parameters which can be estimated by a trained neural network or chemometric equation. A flexural mechanical resonator is also provided to measure fluid density and viscosity from which additional parameters can be estimated by a trained neural network or chemometric equation. The sample tank is pressurized to obviate adverse pressure drop or other effects of diverting a small sample.
Owner:BAKER HUGHES INC

Laser diode array downhole spectrometer

Apparatus and method for downhole formation testing using a spectrometer includes a carrier conveyable into a well borehole that traverses a subterranean formation of interest, a plurality of semiconductor light sources disposed on the carrier, a fluid sample cell that receives light emitted from the plurality of semiconductor light sources, and at least one photodetector that detects light emitted from the plurality of semiconductor light sources and after the light interacts with a fluid in the fluid sample cell.
Owner:BAKER HUGHES INC

Apparatus and method for estimating filtrate contamination in a formation fluid

The disclosure, in one aspect, provides a method for estimating a property of a fluid that includes: pumping an ultraviolet (UV) light into a fluid withdrawn from a formation downhole at a wavelength that produces light due to the Raman effect at wavelengths that are shorter than the substantial wavelengths of fluorescent light produced from the fluid; detecting a spectrum corresponding to the Raman effect light (“Raman spectrum”); and processing the detected Raman spectrum at one or more selected wavelengths to estimate a property of the fluid. In another aspect, the disclosure provides an apparatus that includes a laser that induces UV light at a selected wavelength into a fluid in a chamber, a detector that detects Raman scattered light at wavelengths shorter than the wavelengths of the fluorescent light scattered by the fluid, and a processor that analyzes a spectrum corresponding the Raman scattered light at a selected wavelength to estimate a property of the fluid.
Owner:BAKER HUGHES INC

Mobile soil mapping system for collecting soil reflectance measurements

A mobile soil mapping system includes an implement for traversing a field to be mapped, and a reflectance module carried by the implement for collecting spectroscopic measurements of soil in the field. The reflectance module has a light source, an optical receiver for transmitting light to a spectrometer, and a shutter system that alters the optical path between the light source and the optical receiver. The shutter system allows the system to automatically collect a dark reference measurement and a known reference material measurement at timed intervals to compensate for drift of the spectrometer and the light source. A self-cleaning window on the reflectance module has a lower surface maintained in firm contact with the soil during operation. External reference blocks are used to calibrate the system to ensure standardized, repeatable data. Additional sensors are carried by the implement to collect other soil data, such as electrical conductivity and temperature.
Owner:VERIS TECH

Mobile soil mapping system for collecting soil reflectance measurements

A mobile soil mapping system includes an implement for traversing a field to be mapped, and a reflectance module carried by the implement for collecting spectroscopic measurements of soil in the field. The reflectance module has a light source, an optical receiver for transmitting light to a spectrometer, and a shutter system that alters the optical path between the light source and the optical receiver. The shutter system allows the system to automatically collect a dark reference measurement and a known reference material measurement at timed intervals to compensate for drift of the spectrometer and the light source. A self-cleaning window on the reflectance module has a lower surface maintained in firm contact with the soil during operation. External reference blocks are used to calibrate the system to ensure standardized, repeatable data. Additional sensors are carried by the implement to collect other soil data, such as electrical conductivity and temperature.
Owner:VERIS TECH

Downhole measurement of substances in earth formations

A method for determining a property of earth formations surrounding a borehole, including the following steps: isolating a region of the borehole, and obtaining a sample of borehole fluid from the isolated region; and implementing measurements, dowhole, of the Raman scattering of electromagnetic energy directed at the fluid sample; the property of the earth formations being determinable from the measurements. In a disclosed embodiment, the steps of isolating a region of the borehole and obtaining a sample of borehole fluid from the isolated region include: providing a logging device in the borehole in sealing engagement with the isolated region, causing formation fluid from the isolated region to flow in a flow line of the logging device, and providing a measurement cell in the logging device which receives the sample of formation fluid via the flow line.
Owner:SCHLUMBERGER TECH CORP

Method and apparatus for a tunable diode laser spectrometer for analysis of hydrocarbon samples

The present invention provides an down hole apparatus and method for ultrahigh resolution spectroscopy using a tunable diode laser (TDL) for analyzing a formation fluid sample downhole or at the surface to determine formation fluid parameters. In addition to absorption spectroscopy, the present invention can perform Raman spectroscopy on the fluid, by sweeping the wavelength of the TDL and detecting the Raman-scattered light using a narrow-band detector at a fixed wavelength. The spectrometer analyzes a pressurized well bore fluid sample that is collected downhole. The analysis is performed either downhole or at the surface onsite. Near infrared, mid-infrared and visible light analysis is also performed on the sample to provide an onsite surface or downhole analysis of sample properties and contamination level. The onsite and downhole analysis comprises determination of aromatics, olefins, saturates, gas oil ratio, API gravity and various other parameters which can be estimated by correlation, a trained neural network or a chemometric equation.
Owner:BAKER HUGHES INC

Fracture monitoring

This application relates to methods and apparatus for monitoring hydraulic fracturing during oil / gas well formation. A fiber optic cable (102) deployed down a well bore (106), which may be the well bore in which fracturing is performed, is interrogated to provide a distributed acoustic sensor. Data is sampled from at least one longitudinal sensing portion of the fiber and processed to provide at least fracturing characteristic. The fracturing characteristic may comprise the characteristics of high frequency transients indicative of fracturing events (606). The intensity, frequency, duration and signal evolution of the transients may be monitored to provide the fracturing characteristic. Additionally or alternatively the fracturing characteristic may comprise the longer term acoustic noise generated by fracture fluid flow to the fracture sites. The intensity and frequency of the noise may be analyzed to determine the fracturing characteristic. The method allows real-time control of the fracturing process.
Owner:OPTASENSE HLDG LTD

Borehole Imaging

Apparatus for imaging the wall of a borehole drilled through an underground formation, comprising: a light source; an optical detector device such as a CCD camera; a sensor head including a window for application against the wall of the borehole, the light source being connected to the sensor head so as to illuminate the region of the borehole wall when the sensor head is applied to the wall; and an optical fibre bundle connecting the window to the optical detector device so as to pass optical signals from the wall to the optical detector device; wherein the optical fibre bundle comprises a coherent bundle, each fibre of the coherent bundle providing one pixel of a two-dimensional, multi-pixel image of the borehole wall.
Owner:SCHLUMBERGER TECH CORP

Apparatus and method for evaluating downhole fluids

An apparatus for evaluating downhole fluids is disclosed. The apparatus includes: an optical block having an adjustable opening that receives electromagnetic energy emitted by an electromagnetic energy source; a controller operatively associated with the optical block for adjusting the opening size, wherein the opening size is adjusted at least in part based on one or more estimated downhole parameters; and a sensor that receives the electromagnetic energy emitted by the electromagnetic energy source after the emitted electromagnetic energy interacts with a downhole fluid. A method for evaluating downhole fluids is also disclosed.
Owner:BAKER HUGHES INC

Providing a light cell in a wellbore

This invention provides a method for controlling production operations using fiber optic devices. An optical fiber carrying fiber-optic sensors is deployed downhole to provide information about downhole conditions. Parameters related to the chemicals being used for surface treatments are measured in real time and on-line, and these measured parameters are used to control the dosage of chemicals into the surface treatment system. The information is also used to control downhole devices that may be a packer, choke, sliding sleeve, perforating device, flow control valve, completion device, an anchor or any other device. Provision is also made for control of secondary recovery operations online using the downhole sensors to monitor the reservoir conditions. The present invention also provides a method of generating motive power in a wellbore utilizing optical energy. This can be done directly or indirectly, e.g., by first producing electrical energy that is then converted to another form of energy.
Owner:SENSOR HIGHWAY LTD

Methods and apparatus for analysis of downhole asphaltene gradients and applications thereof

A method and system for characterizing asphaltene gradients of a reservoir of interest and analyzing properties of the reservoir of interest based upon such asphaltene gradients. The analysis employs a correlation that relates insoluble asphaltene concentration to spectrophotometry measurement data measured at depth.
Owner:SCHLUMBERGER TECH CORP

Method and apparatus for obtaining a micro sample downhole

The present invention provides a downhole sample tank and a plurality of micro sample chambers. The micro sample chambers can have at least one window for introduction of visible, near-infrared (NIR), mid-infrared (MIR) and other electromagnetic energy into the tank for samples collected in the micro sample chamber downhole from an earth boring or well bore. The window is made of sapphire or another material capable of allowing electromagnetic energy to pass through the window. The entire micro sample chamber can be made of sapphire or another material capable of allowing electromagnetic energy to pass another material enabling visual inspection or analysis of the sample inside the micro sample chamber. The micro sample chamber enables immediate testing of the sample on location at the surface to determine the quality of the sample in the main sample tank or to enable comprehensive testing of the sample.
Owner:BAKER HUGHES INC

System and method for determining formation fluid parameters using refractive index

A method and apparatus is described for determining a parameter of interest of a formation fluid. The method comprises moving a tool attached to a tubular member along a borehole in a subterranean formation. The tool is used to determine the refractive index, pressure and temperature of a formation fluid sample, in situ, at a predetermined location along the borehole. A refractive index of a reference fluid is calculated at the sample conditions. The parameter of interest of the formation fluid is determined at the predetermined location from a comparison of the corresponding formation fluid refractive index and the reference fluid refractive index at the predetermined location. In another embodiment, the refractive index of a natural gas sample is determined and compared to the refractive index of pure methane, at downhole conditions, to indicate the dryness of the natural gas.
Owner:BAKER HUGHES INC

Downhole measurement of substances in formations while drilling

A method and apparatus for measuring a substance in formations surrounding an earth borehole being drilled with a drill bit at the end of a drill string, using drilling fluid that flows downward through the drill string, exits through the drill bit entrained with drilled earth formation cuttings, and returns toward the earth's surface in the annulus between the drill string and the borehole, the method including the following steps: waiting for any of the substance that is dissolved in the drilling fluid to be substantially in equilibrium with any of the substance in the earth formation cuttings; and then measuring, downhole, the substance dissolved in the drilling fluid.
Owner:SCHLUMBERGER TECH CORP

Mobile soil optical mapping system

A soil mapping system for collecting and mapping soil reflectance data in a field includes an implement having a furrow opener for creating a furrow and an optical module. The optical module is arranged to collect soil reflectance data at a predetermined depth within the furrow as the implement traverses a field. The optical module includes two monochromatic light sources, a window arranged to press against the soil, and a photodiode for receiving light reflected back from the soil through the window. The two light sources have different wavelengths and are modulated at different frequencies. The photodiode provides a modulated voltage output signal that contains reflectance data from both of the light sources. Additional measurement devices are carried by the implement for collecting additional soil property data, such as electrical conductivity, pH, and elevation, which can be used together with the optical data to determine variations in soil organic matter.
Owner:VERIS TECH

Detecting Fluids In a Wellbore

ActiveUS20100243241A1Receipt is inhibitedPrevent extensive cyclingSurveyConstructionsWellboreLight source
In one general implementation, a method for identifying fluids in a wellbore includes generating light in a visible spectrum from a light source in a production wellbore; generating light in an ultraviolet spectrum from the light source in the production wellbore; receiving a first fluid in the production wellbore from a subterranean zone; receiving a second fluid in the production wellbore from the subterranean zone; capturing at least one image of a combined flow of the first fluid and the second fluid in at least one of the visible spectrum and the ultraviolet spectrum with an optical receiver in the production wellbore; and distinguishing, at least in part through the image, the first fluid from the second fluid in either or both the visible and ultraviolet spectrums.
Owner:OXY USA INC

System of subterranean anomaly detection and repair using infrared thermography and ground penetrating radar

ActiveUS20070090989A1Fast and economical and safe and efficient and accurate and reliableMinimal inconvenienceRadiation pyrometryOptical prospectingAnomaly detectionGround-penetrating radar
Method and system to identify, verify and remediate subterranean anomalies. Infrared (IR) thermographic scanning [10] of a selected surface area obtains image area data [12, 14] inferring such an anomaly. Ground penetrating radar (GPR) is used [22] at predetermined surface locations penetrates subterraneously to a depth including the anomaly, creating vertical dimension radar data [120] showing anomaly depth. Surface image IR data is correlated with GPR data to verify the anomaly and its vertical dimension and finds [124] a central location in the anomaly. Anomaly volume is predetermined from the area data and vertical-dimension data. Grout injected [26, 124] into the central location at first pressure secures the anomaly by surrounding the central location. After verifying centrally securement, more grout is injected [32, 126] into the anomaly region at second pressure at least as great as the first pressure until the total grout injected approximates the predetermined anomaly volume.
Owner:ENTECH ENG

System and method of optical measurements for wellbore survey

A system of optical measurements for wellbore survey comprises a light conveyable cable, an optical measurement apparatus optically coupled to one end of the light conveyable cable, and a light source optically coupled to another end of the light conveyable cable. The light source produces light used for optical measurements in the optical measurement apparatus.
Owner:SCHLUMBERGER TECH CORP

High temperature near infrared for measurements and telemetry in well boreholes

A borehole logging system for the measure and the telemetry of properties and conditions of a well borehole environs. The system is embodied to measure fluids within the borehole, to measure high resolution images of the wall of the borehole, to transfer of data to and from equipment operating within the borehole environment, and to determine the status of equipment operating within the borehole. The embodiments are based upon emission, measurement and processing of electromagnetic radiation in the near infrared (NIR) region of the radiation spectrum.
Owner:WEATHERFORD TECH HLDG LLC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products