Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

392 results about "Microstrip patch antenna" patented technology

Double-sideband suppressed-carrier radar to null near-field reflections from a first interface between media layers

A ground-penetrating radar comprises a software-definable transmitter for launching pairs of widely separated and coherent continuous waves. Each pair is separated by a constant or variable different amount double-sideband suppressed carrier modulation such as 10 MHz, 20 MHz, and 30 MHz Processing suppresses the larger first interface reflection and emphasizes the smaller second, third, etc. reflections. Processing determines the electrical parameter of the natural medium adjacent to the antenna.
The modulation process may be the variable or constant frequency difference between pairs of frequencies. If a variable frequency is used in modulation, pairs of tunable resonant microstrip patch antennas (resonant microstrip patch antenna) can be used in the antenna design. If a constant frequency difference is used in the software-defined transceiver, a wide-bandwidth antenna design is used featuring a swept or stepped-frequency continuous-wave (SFCW) radar design.
The received modulation signal has a phase range that starts at 0-degrees at the transmitter antenna, which is near the first interface surface. After coherent demodulation, the first reflection is suppressed. The pair of antennas may increase suppression. Then the modulation signal phase is changed by 90-degrees and the first interface signal is measured to determine the in situ electrical parameters of the natural medium.
Deep reflections at 90-degrees and 270-degrees create maximum reflection and will be illuminated with modulation signal peaks. Quadrature detection, mixing, and down-conversion result in 0-degree and 180-degree reflections effectively dropping out in demodulation.
Owner:STOLAR

LTCC lamination double-fed circularly polarized micro-strip paster antenna

The invention relates to an LTCC lamination double-fed circularly polarized micro-strip paster antenna, which belongs to the technical field of antennae and particularly relates to a micro-strip paster antenna with a low section. The antenna comprises two layers of radiation metal pasters, a grounding metal layer and a feed layer, wherein the four functional layers are spaced by three layers of medium LTCC ceramic dielectric substrates, and the feed layer consists of a Wilkins-layer power divider and a 90-degree phase shift micro-strip line. The geometric centers of the two layers of radiation metal pasters and the grounding metal layer are connected with each other by metal grounding pins, and the double-fed points with 90-degree phase difference on the feed layer are connected with the upper layer of radiation metal paster via metal feed pins. Two edges of each of the two layers of radiation metal pasters are respectively provided with two rectangular frequency modulation electrodes. The invention not only can better give consideration to the performance requirements of low section, broadband and circular polarization of the micro-strip antenna, but also can appropriately regulate the frequency band of the antenna conveniently.
Owner:UNIV OF ELECTRONICS SCI & TECH OF CHINA

LTCC lamination microstrip patch antenna

The invention discloses an LTCC-stacked microstrip patch antenna, pertains to the antenna technical field and relates to the LTCC (low temperature co-fired ceramic) technology, in particular to a low profile microstrip patch antenna applied to receiving radio. The microstrip patch antenna comprises three layers of LTCC substrates: the first layer of substrate is provided with a coaxial feeding hole, the upper surface thereof is a first radiation metal patch and the lower surface thereof is a reflection plate; the second layer of substrate is evenly provided with air holes; and the upper surface of the third layer of substrate is a second radiation metal patch. In addition, the microstrip patch antenna also comprises a coaxial feeding needle which is inserted into the coaxial feeding hole from the bottom to be connected with the first radiation metal patch on the first layer of substrate and be insulated with the reflection plate. The first, second and third layers of LTCC substrates form an integrity after passing through an LTCC stack and isostatic pressing technology from the bottom up and co-fire is carried out to the integrity at low temperature so as to form another integrity. The microstrip patch antenna can effectively widen the band width of a microstrip antenna, intensify the coupling between two radiation patches and improve the stability and reliability of the antenna.
Owner:UNIV OF ELECTRONICS SCI & TECH OF CHINA

Vertical coupled feeding structure applied to millimeter-wave microstrip antenna

The invention relates to a vertical coupled structure applied to a millimeter-wave microstrip antenna. The vertical coupled structure comprises microstrip patch antennae, a bottom-layer medium chip substrate, a substrate cavity forming structure, a grounding plate with a gap, a top-layer chip substrate and a coplanar waveguide adapter microstrip feeder line. The microstrip patch antennae are arranged on the bottom sides of the bottom-layer medium chip substrate and the top-layer chip substrate. The substrate cavity forming structure is formed by forming a cavity in the bottom-layer medium chip substrate. The coupling caliber of the gap is located between a bottom-layer medium chip and a top-layer chip. The coplanar waveguide adapter microstrip feeder line is arranged on the upper surface of the top-layer chip substrate. The interlayer vertical interconnection problem of the antenna and a radio-frequency circuit when working frequency is within a millimeter-wave frequency range can be solved by means of the vertical coupled structure. The vertical coupled structure has the advantages of being free of weld points and parasitic radiation and capable of obtaining an even radiation pattern, overcoming the adverse influence brought by a traditional single feed mode and design limitations and the like.
Owner:SHANGHAI INST OF MICROSYSTEM & INFORMATION TECH CHINESE ACAD OF SCI

Double-sideband suppressed-carrier radar to null near-field reflections from a first interface between media layers

A ground-penetrating radar comprises a software-definable transmitter for launching pairs of widely separated and coherent continuous waves. Each pair is separated by a constant or variable different amount double-sideband suppressed carrier modulation such as 10 MHz, 20 MHz, and 30 MHz Processing suppresses the larger first interface reflection and emphasizes the smaller second, third, etc. reflections. Processing determines the electrical parameter of the natural medium adjacent to the antenna.The modulation process may be the variable or constant frequency difference between pairs of frequencies. If a variable frequency is used in modulation, pairs of tunable resonant microstrip patch antennas (resonant microstrip patch antenna) can be used in the antenna design. If a constant frequency difference is used in the software-defined transceiver, a wide-bandwidth antenna design is used featuring a swept or stepped-frequency continuous-wave (SFCW) radar design.The received modulation signal has a phase range that starts at 0-degrees at the transmitter antenna, which is near the first interface surface. After coherent demodulation, the first reflection is suppressed. The pair of antennas may increase suppression. Then the modulation signal phase is changed by 90-degrees and the first interface signal is measured to determine the in situ electrical parameters of the natural medium.Deep reflections at 90-degrees and 270-degrees create maximum reflection and will be illuminated with modulation signal peaks. Quadrature detection, mixing, and down-conversion result in 0-degree and 180-degree reflections effectively dropping out in demodulation.
Owner:STOLAR

77GHz millimeter wave radio frequency device and using method thereof

The invention provides a 77GHz millimeter wave radio frequency device and a using method thereof, and belongs to the technical field of millimeter wave radars. The 77GHz millimeter wave radio frequency device comprises a digital signal processor, a direct digital frequency synthesizer, an up-converter, a power amplifier, a buffer, a transmitting antenna, a receiving antenna, a low noise amplifier, a frequency mixer at a receiving terminal, a variable gain amplifier and a demodulating analog-to-digital converter. The 77GHz millimeter wave radio frequency device has the advantages that the 77GHz millimeter wave radio frequency device can be widely applied to millimeter wave range-and-speed measuring radar systems, and 77GHz is adopted as a working frequency band of a millimeter wave radar and combined with a phased-array antenna technology that low temperature co-fired ceramic (LTCC) is used as a substrate to manufacture each micro-strip patch antenna serving as an antenna unit; the direct digital frequency synthesizer is adopted and combined with an up-conversion technology to generate linear frequency modulated continuous waves; and a plurality of transmitter units are adopted andcombined with the phased-array antenna technology to realize horizontal scanning of millimeter wave beams.
Owner:苏州煜瑛微电子科技有限公司
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products