A sensing device having a sensing arrangement with a sensing end (32) for coming into contact with a surface to be scanned of a body (26), a camera (30), and a connecting device (34) for rigidly connecting the camera with the sensing end, the camera being arranged such that it can detect a surface (12) which is provided with marks suitable to be automatically photogrammetrically evaluated and on which the body to be scanned has been placed, when the sensing end comes into contact with different points of the surface to be scanned of the body. The sensing device further has a photogrammetric evaluation program for a computing unit (18), the computing unit being configured such that image signals generated by the camera can be routed to the computing unit and the evaluation program can calculate the 3D coordinates of the surface to be scanned from the sequence of recorded and transmitted image sections using the marks (22) suitable to be automatically photogrammetrically evaluated. A method of detecting a three-dimensional spatial shape of a body, in particular the spatial shape of an interior of a hollow body, the method including the following steps: fastening the body to be digitized on a surface (12) which, at known positions, is provided with marks (22) suitable to be automatically photogrammetrically evaluated, and providing the sensing device. Further steps are the scanning of a point on the spatial shape to be detected by means of the sensing end (32) of the sensing arrangement (28), recording at least one section of the photogrammetrically marked surface by the camera (30) while the sensing end scans the point, a plurality of marks suitable to be photogrammetrically evaluated being detected, and repeating the steps of scanning and recording for a multitude of different points of the spatial shape to be detected. The recorded images are evaluated by an evaluation program.