Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1562 results about "Microstrip antenna" patented technology

In telecommunication, a microstrip antenna (also known as a printed antenna) usually means an antenna fabricated using microstrip techniques on a printed circuit board (PCB). It is a kind of internal antenna. They are mostly used at microwave frequencies. An individual microstrip antenna consists of a patch of metal foil of various shapes (a patch antenna) on the surface of a PCB (printed circuit board), with a metal foil ground plane on the other side of the board. Most microstrip antennas consist of multiple patches in a two-dimensional array. The antenna is usually connected to the transmitter or receiver through foil microstrip transmission lines. The radio frequency current is applied (or in receiving antennas the received signal is produced) between the antenna and ground plane. Microstrip antennas have become very popular in recent decades due to their thin planar profile which can be incorporated into the surfaces of consumer products, aircraft and missiles; their ease of fabrication using printed circuit techniques; the ease of integrating the antenna on the same board with the rest of the circuit, and the possibility of adding active devices such as microwave integrated circuits to the antenna itself to make active antennas.

Fixed-frequency beam-steerable leaky-wave microstrip antenna

A fixed frequency continuously beam-steerable leaky-wave antenna in microstrip is disclosed. The antenna's radiating strips are loaded with identical shunt-mounted variable-reactance elements, resulting in low reverse-bias-voltage requirements. By varying the reverse-bias voltage across the variable-reactance elements, the main beam of the antenna may be scanned continuously at fixed frequency. The antenna may consist of an array of radiating strips, wherein each strip includes a variable-reactance element. Changing the element's reactance value has a similar effect as changing the length of the radiating strips. This is accompanied by a change in the phase velocity of the electromagnetic wave traveling along the antenna, and results in continuous fixed-frequency main-beam steering. Alternatively, the antenna may consist of two long radiating strips separated by a small gap, wherein identical variable-reactance elements are mounted in shunt across the gap at regular intervals. A continuous change in the reactance value has a similar effect as changing continuously the width of the radiating strips. This results in a continuous change in the phase velocity of the electromagnetic wave traveling along the antenna, thereby achieving continuous fixed-frequency main-beam steering.
Owner:ANRITSU CO

Fixed-frequency beam-steerable leaky-wave microstrip antenna

A fixed frequency continuously beam-steerable leaky-wave antenna in microstrip is disclosed. The antenna's radiating strips are loaded with identical shunt-mounted variable-reactance elements, resulting in low reverse-bias-voltage requirements. By varying the reverse-bias voltage across the variable-reactance elements, the main beam of the antenna may be scanned continuously at fixed frequency. The antenna may consist of an array of radiating strips, wherein each strip includes a variable-reactance element. Changing the element's reactance value has a similar effect as changing the length of the radiating strips. This is accompanied by a change in the phase velocity of the electromagnetic wave traveling along the antenna, and results in continuous fixed-frequency main-beam steering. Alternatively, the antenna may consist of two long radiating strips separated by a small gap, wherein identical variable-reactance elements are mounted in shunt across the gap at regular intervals. A continuous change in the reactance value has a similar effect as changing continuously the width of the radiating strips. This results in a continuous change in the phase velocity of the electromagnetic wave traveling along the antenna, thereby achieving continuous fixed-frequency main-beam steering.
Owner:ANRITSU CO

Antenna unit and communication device using the same

In an antenna unit, the generation of capacitances between each of the open ends of first and second microstrip antennas and a control electrode is controlled by turning a switch on and off, both antenna frequencies being simultaneously changed. The antenna unit has a basic body having first and second main surfaces and at least one end surface extending between the main surfaces; a grounding electrode provided on the first main surface of the basic body; a first radiation electrode forming a first antenna, having an open end at one end thereof, and provided on the second main surface of the basic body; a second radiation electrode forming a second antenna, having an open end at one end thereof, and provided on the second main surface of the basic body; a first connecting electrode for connecting the first radiation electrode to the grounding electrode, and provided on an end surface of the basic body; a second connecting electrode for connecting the second radiation electrode to the grounding electrode, and provided on an end surface of the basic body; a feeding electrode for transmitting a signal to at least one of the first radiation electrode and the second radiation electrode, and provided on the basic body; and a control electrode on the basic body for providing coupling capacitances between the open end of the first radiation electrode and the control electrode and between the open end of the second radiation electrode and the control electrode, and provided so as to be close to each of the open ends.
Owner:MURATA MFG CO LTD

Miniature high-gain single-feed-point dual-band dual-polarized microstrip antenna

InactiveCN102148428AAchieve dual-frequency circular polarizationRealize dual-frequency circular polarization characteristicsRadiating elements structural formsResonant antennasAntenna gainEngineering
The invention discloses a miniature high-gain single-feed-point dual-band dual-polarized microstrip antenna, which comprises a substrate, wherein the upper surface of the substrate is provided with a first radiation sticker and a second radiation sticker; the first radiation sticker is positioned in the annular hollow of the second radiation sticker, and the first and second radiation stickers have the same center; the lower surface of the substrate is provided with a conductive grounding plate; a coaxial probe feeder vertically passes through the substrate; the upper end of the coaxial probe feeder is coupled with the first radiation sticker, and the lower end of the coaxial probe feeder is connected with a coaxial radio frequency joint; the coaxial probe feeder is directly connected with the first radiation sticker for electrical coupling; the second radiation sticker is electromagnetically coupled with the first radiation sticker; and the sidewall of the substrate is encased with electrodes which are connected with the conductive grounding plate to form back cavity electrodes. The gain of the dual-band dual-polarized microstrip antenna is increased, and the problem that the antenna gain and volume of the antenna are mutually restricted is solved by increasing the back cavity electrodes connected with the ground plane of the antenna on the premise of not increasing the volume of the dual-band antenna, and the thickness and sectional area of the substrate.
Owner:CHINA ELECTRONICS TECH GRP NO 26 RES INST

Lightweight dielectric-filled multi-beam cylindrical Luneberg lens antenna

The invention discloses a lightweight dielectric-filled multi-beam cylindrical Luneberg lens antenna applied to multi-beam directional communication and beam scanning. The basic structure of the lightweight dielectric-filled multi-beam cylindrical Luneberg lens antenna comprises a cylindrical Luneberg dielectric lens and a curved array (3), wherein the curved array (3) comprises a plurality of E-shaped microstrip antenna feed sources; the cylindrical Luneberg dielectric lens between two parallel metal plates (4) is divided into three layers, namely an outer layer lens (11), a middle layer lens (12) and an inner layer lens (13); the three layers all adopt lightweight foam with a low dielectric constant as a substrate material; holes are formed in the substrate material and are filled with dielectric rods with high dielectric constants; the holes in the three lenses sequentially become dense from the outside to the inside; and the curved array (3) is fixed between the two parallel metal plates (4). The holes are formed in the substrate material with the low dielectric constant and are filled with a dielectric material with a high dielectric constant, so that required gradient dielectric constant is achieved; and lightweight of the antenna is achieved when the electrical property of the antenna is met.
Owner:UNIV OF ELECTRONICS SCI & TECH OF CHINA
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products